diff -r 4a15873c4ec9 -r 41ee3bfccb4d src/HOL/BNF/Examples/Derivation_Trees/Gram_Lang.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/BNF/Examples/Derivation_Trees/Gram_Lang.thy Tue Oct 16 13:09:46 2012 +0200 @@ -0,0 +1,1374 @@ +(* Title: HOL/BNF/Examples/Infinite_Derivation_Trees/Gram_Lang.thy + Author: Andrei Popescu, TU Muenchen + Copyright 2012 + +Language of a grammar. +*) + +header {* Language of a Grammar *} + +theory Gram_Lang +imports Tree +begin + + +consts P :: "(N \ (T + N) set) set" +axiomatization where + finite_N: "finite (UNIV::N set)" +and finite_in_P: "\ n tns. (n,tns) \ P \ finite tns" +and used: "\ n. \ tns. (n,tns) \ P" + + +subsection{* Tree basics: frontier, interior, etc. *} + +lemma Tree_cong: +assumes "root tr = root tr'" and "cont tr = cont tr'" +shows "tr = tr'" +by (metis Node_root_cont assms) + +inductive finiteT where +Node: "\finite as; (finiteT^#) as\ \ finiteT (Node a as)" +monos lift_mono + +lemma finiteT_induct[consumes 1, case_names Node, induct pred: finiteT]: +assumes 1: "finiteT tr" +and IH: "\as n. \finite as; (\^#) as\ \ \ (Node n as)" +shows "\ tr" +using 1 apply(induct rule: finiteT.induct) +apply(rule IH) apply assumption apply(elim mono_lift) by simp + + +(* Frontier *) + +inductive inFr :: "N set \ Tree \ T \ bool" where +Base: "\root tr \ ns; Inl t \ cont tr\ \ inFr ns tr t" +| +Ind: "\root tr \ ns; Inr tr1 \ cont tr; inFr ns tr1 t\ \ inFr ns tr t" + +definition "Fr ns tr \ {t. inFr ns tr t}" + +lemma inFr_root_in: "inFr ns tr t \ root tr \ ns" +by (metis inFr.simps) + +lemma inFr_mono: +assumes "inFr ns tr t" and "ns \ ns'" +shows "inFr ns' tr t" +using assms apply(induct arbitrary: ns' rule: inFr.induct) +using Base Ind by (metis inFr.simps set_mp)+ + +lemma inFr_Ind_minus: +assumes "inFr ns1 tr1 t" and "Inr tr1 \ cont tr" +shows "inFr (insert (root tr) ns1) tr t" +using assms apply(induct rule: inFr.induct) + apply (metis inFr.simps insert_iff) + by (metis inFr.simps inFr_mono insertI1 subset_insertI) + +(* alternative definition *) +inductive inFr2 :: "N set \ Tree \ T \ bool" where +Base: "\root tr \ ns; Inl t \ cont tr\ \ inFr2 ns tr t" +| +Ind: "\Inr tr1 \ cont tr; inFr2 ns1 tr1 t\ + \ inFr2 (insert (root tr) ns1) tr t" + +lemma inFr2_root_in: "inFr2 ns tr t \ root tr \ ns" +apply(induct rule: inFr2.induct) by auto + +lemma inFr2_mono: +assumes "inFr2 ns tr t" and "ns \ ns'" +shows "inFr2 ns' tr t" +using assms apply(induct arbitrary: ns' rule: inFr2.induct) +using Base Ind +apply (metis subsetD) by (metis inFr2.simps insert_absorb insert_subset) + +lemma inFr2_Ind: +assumes "inFr2 ns tr1 t" and "root tr \ ns" and "Inr tr1 \ cont tr" +shows "inFr2 ns tr t" +using assms apply(induct rule: inFr2.induct) + apply (metis inFr2.simps insert_absorb) + by (metis inFr2.simps insert_absorb) + +lemma inFr_inFr2: +"inFr = inFr2" +apply (rule ext)+ apply(safe) + apply(erule inFr.induct) + apply (metis (lifting) inFr2.Base) + apply (metis (lifting) inFr2_Ind) + apply(erule inFr2.induct) + apply (metis (lifting) inFr.Base) + apply (metis (lifting) inFr_Ind_minus) +done + +lemma not_root_inFr: +assumes "root tr \ ns" +shows "\ inFr ns tr t" +by (metis assms inFr_root_in) + +theorem not_root_Fr: +assumes "root tr \ ns" +shows "Fr ns tr = {}" +using not_root_inFr[OF assms] unfolding Fr_def by auto + + +(* Interior *) + +inductive inItr :: "N set \ Tree \ N \ bool" where +Base: "root tr \ ns \ inItr ns tr (root tr)" +| +Ind: "\root tr \ ns; Inr tr1 \ cont tr; inItr ns tr1 n\ \ inItr ns tr n" + +definition "Itr ns tr \ {n. inItr ns tr n}" + +lemma inItr_root_in: "inItr ns tr n \ root tr \ ns" +by (metis inItr.simps) + +lemma inItr_mono: +assumes "inItr ns tr n" and "ns \ ns'" +shows "inItr ns' tr n" +using assms apply(induct arbitrary: ns' rule: inItr.induct) +using Base Ind by (metis inItr.simps set_mp)+ + + +(* The subtree relation *) + +inductive subtr where +Refl: "root tr \ ns \ subtr ns tr tr" +| +Step: "\root tr3 \ ns; subtr ns tr1 tr2; Inr tr2 \ cont tr3\ \ subtr ns tr1 tr3" + +lemma subtr_rootL_in: +assumes "subtr ns tr1 tr2" +shows "root tr1 \ ns" +using assms apply(induct rule: subtr.induct) by auto + +lemma subtr_rootR_in: +assumes "subtr ns tr1 tr2" +shows "root tr2 \ ns" +using assms apply(induct rule: subtr.induct) by auto + +lemmas subtr_roots_in = subtr_rootL_in subtr_rootR_in + +lemma subtr_mono: +assumes "subtr ns tr1 tr2" and "ns \ ns'" +shows "subtr ns' tr1 tr2" +using assms apply(induct arbitrary: ns' rule: subtr.induct) +using Refl Step by (metis subtr.simps set_mp)+ + +lemma subtr_trans_Un: +assumes "subtr ns12 tr1 tr2" and "subtr ns23 tr2 tr3" +shows "subtr (ns12 \ ns23) tr1 tr3" +proof- + have "subtr ns23 tr2 tr3 \ + (\ ns12 tr1. subtr ns12 tr1 tr2 \ subtr (ns12 \ ns23) tr1 tr3)" + apply(induct rule: subtr.induct, safe) + apply (metis subtr_mono sup_commute sup_ge2) + by (metis (lifting) Step UnI2) + thus ?thesis using assms by auto +qed + +lemma subtr_trans: +assumes "subtr ns tr1 tr2" and "subtr ns tr2 tr3" +shows "subtr ns tr1 tr3" +using subtr_trans_Un[OF assms] by simp + +lemma subtr_StepL: +assumes r: "root tr1 \ ns" and tr12: "Inr tr1 \ cont tr2" and s: "subtr ns tr2 tr3" +shows "subtr ns tr1 tr3" +apply(rule subtr_trans[OF _ s]) +apply(rule Step[of tr2 ns tr1 tr1]) +apply(rule subtr_rootL_in[OF s]) +apply(rule Refl[OF r]) +apply(rule tr12) +done + +(* alternative definition: *) +inductive subtr2 where +Refl: "root tr \ ns \ subtr2 ns tr tr" +| +Step: "\root tr1 \ ns; Inr tr1 \ cont tr2; subtr2 ns tr2 tr3\ \ subtr2 ns tr1 tr3" + +lemma subtr2_rootL_in: +assumes "subtr2 ns tr1 tr2" +shows "root tr1 \ ns" +using assms apply(induct rule: subtr2.induct) by auto + +lemma subtr2_rootR_in: +assumes "subtr2 ns tr1 tr2" +shows "root tr2 \ ns" +using assms apply(induct rule: subtr2.induct) by auto + +lemmas subtr2_roots_in = subtr2_rootL_in subtr2_rootR_in + +lemma subtr2_mono: +assumes "subtr2 ns tr1 tr2" and "ns \ ns'" +shows "subtr2 ns' tr1 tr2" +using assms apply(induct arbitrary: ns' rule: subtr2.induct) +using Refl Step by (metis subtr2.simps set_mp)+ + +lemma subtr2_trans_Un: +assumes "subtr2 ns12 tr1 tr2" and "subtr2 ns23 tr2 tr3" +shows "subtr2 (ns12 \ ns23) tr1 tr3" +proof- + have "subtr2 ns12 tr1 tr2 \ + (\ ns23 tr3. subtr2 ns23 tr2 tr3 \ subtr2 (ns12 \ ns23) tr1 tr3)" + apply(induct rule: subtr2.induct, safe) + apply (metis subtr2_mono sup_commute sup_ge2) + by (metis Un_iff subtr2.simps) + thus ?thesis using assms by auto +qed + +lemma subtr2_trans: +assumes "subtr2 ns tr1 tr2" and "subtr2 ns tr2 tr3" +shows "subtr2 ns tr1 tr3" +using subtr2_trans_Un[OF assms] by simp + +lemma subtr2_StepR: +assumes r: "root tr3 \ ns" and tr23: "Inr tr2 \ cont tr3" and s: "subtr2 ns tr1 tr2" +shows "subtr2 ns tr1 tr3" +apply(rule subtr2_trans[OF s]) +apply(rule Step[of _ _ tr3]) +apply(rule subtr2_rootR_in[OF s]) +apply(rule tr23) +apply(rule Refl[OF r]) +done + +lemma subtr_subtr2: +"subtr = subtr2" +apply (rule ext)+ apply(safe) + apply(erule subtr.induct) + apply (metis (lifting) subtr2.Refl) + apply (metis (lifting) subtr2_StepR) + apply(erule subtr2.induct) + apply (metis (lifting) subtr.Refl) + apply (metis (lifting) subtr_StepL) +done + +lemma subtr_inductL[consumes 1, case_names Refl Step]: +assumes s: "subtr ns tr1 tr2" and Refl: "\ns tr. \ ns tr tr" +and Step: +"\ns tr1 tr2 tr3. + \root tr1 \ ns; Inr tr1 \ cont tr2; subtr ns tr2 tr3; \ ns tr2 tr3\ \ \ ns tr1 tr3" +shows "\ ns tr1 tr2" +using s unfolding subtr_subtr2 apply(rule subtr2.induct) +using Refl Step unfolding subtr_subtr2 by auto + +lemma subtr_UNIV_inductL[consumes 1, case_names Refl Step]: +assumes s: "subtr UNIV tr1 tr2" and Refl: "\tr. \ tr tr" +and Step: +"\tr1 tr2 tr3. + \Inr tr1 \ cont tr2; subtr UNIV tr2 tr3; \ tr2 tr3\ \ \ tr1 tr3" +shows "\ tr1 tr2" +using s apply(induct rule: subtr_inductL) +apply(rule Refl) using Step subtr_mono by (metis subset_UNIV) + +(* Subtree versus frontier: *) +lemma subtr_inFr: +assumes "inFr ns tr t" and "subtr ns tr tr1" +shows "inFr ns tr1 t" +proof- + have "subtr ns tr tr1 \ (\ t. inFr ns tr t \ inFr ns tr1 t)" + apply(induct rule: subtr.induct, safe) by (metis inFr.Ind) + thus ?thesis using assms by auto +qed + +corollary Fr_subtr: +"Fr ns tr = \ {Fr ns tr' | tr'. subtr ns tr' tr}" +unfolding Fr_def proof safe + fix t assume t: "inFr ns tr t" hence "root tr \ ns" by (rule inFr_root_in) + thus "t \ \{{t. inFr ns tr' t} |tr'. subtr ns tr' tr}" + apply(intro UnionI[of "{t. inFr ns tr t}" _ t]) using t subtr.Refl by auto +qed(metis subtr_inFr) + +lemma inFr_subtr: +assumes "inFr ns tr t" +shows "\ tr'. subtr ns tr' tr \ Inl t \ cont tr'" +using assms apply(induct rule: inFr.induct) apply safe + apply (metis subtr.Refl) + by (metis (lifting) subtr.Step) + +corollary Fr_subtr_cont: +"Fr ns tr = \ {Inl -` cont tr' | tr'. subtr ns tr' tr}" +unfolding Fr_def +apply safe +apply (frule inFr_subtr) +apply auto +by (metis inFr.Base subtr_inFr subtr_rootL_in) + +(* Subtree versus interior: *) +lemma subtr_inItr: +assumes "inItr ns tr n" and "subtr ns tr tr1" +shows "inItr ns tr1 n" +proof- + have "subtr ns tr tr1 \ (\ t. inItr ns tr n \ inItr ns tr1 n)" + apply(induct rule: subtr.induct, safe) by (metis inItr.Ind) + thus ?thesis using assms by auto +qed + +corollary Itr_subtr: +"Itr ns tr = \ {Itr ns tr' | tr'. subtr ns tr' tr}" +unfolding Itr_def apply safe +apply (metis (lifting, mono_tags) UnionI inItr_root_in mem_Collect_eq subtr.Refl) +by (metis subtr_inItr) + +lemma inItr_subtr: +assumes "inItr ns tr n" +shows "\ tr'. subtr ns tr' tr \ root tr' = n" +using assms apply(induct rule: inItr.induct) apply safe + apply (metis subtr.Refl) + by (metis (lifting) subtr.Step) + +corollary Itr_subtr_cont: +"Itr ns tr = {root tr' | tr'. subtr ns tr' tr}" +unfolding Itr_def apply safe + apply (metis (lifting, mono_tags) inItr_subtr) + by (metis inItr.Base subtr_inItr subtr_rootL_in) + + +subsection{* The immediate subtree function *} + +(* production of: *) +abbreviation "prodOf tr \ (id \ root) ` (cont tr)" +(* subtree of: *) +definition "subtrOf tr n \ SOME tr'. Inr tr' \ cont tr \ root tr' = n" + +lemma subtrOf: +assumes n: "Inr n \ prodOf tr" +shows "Inr (subtrOf tr n) \ cont tr \ root (subtrOf tr n) = n" +proof- + obtain tr' where "Inr tr' \ cont tr \ root tr' = n" + using n unfolding image_def by (metis (lifting) Inr_oplus_elim assms) + thus ?thesis unfolding subtrOf_def by(rule someI) +qed + +lemmas Inr_subtrOf = subtrOf[THEN conjunct1] +lemmas root_subtrOf[simp] = subtrOf[THEN conjunct2] + +lemma Inl_prodOf: "Inl -` (prodOf tr) = Inl -` (cont tr)" +proof safe + fix t ttr assume "Inl t = (id \ root) ttr" and "ttr \ cont tr" + thus "t \ Inl -` cont tr" by(cases ttr, auto) +next + fix t assume "Inl t \ cont tr" thus "t \ Inl -` prodOf tr" + by (metis (lifting) id_def image_iff sum_map.simps(1) vimageI2) +qed + +lemma root_prodOf: +assumes "Inr tr' \ cont tr" +shows "Inr (root tr') \ prodOf tr" +by (metis (lifting) assms image_iff sum_map.simps(2)) + + +subsection{* Derivation trees *} + +coinductive dtree where +Tree: "\(root tr, (id \ root) ` (cont tr)) \ P; inj_on root (Inr -` cont tr); + lift dtree (cont tr)\ \ dtree tr" +monos lift_mono + +(* destruction rules: *) +lemma dtree_P: +assumes "dtree tr" +shows "(root tr, (id \ root) ` (cont tr)) \ P" +using assms unfolding dtree.simps by auto + +lemma dtree_inj_on: +assumes "dtree tr" +shows "inj_on root (Inr -` cont tr)" +using assms unfolding dtree.simps by auto + +lemma dtree_inj[simp]: +assumes "dtree tr" and "Inr tr1 \ cont tr" and "Inr tr2 \ cont tr" +shows "root tr1 = root tr2 \ tr1 = tr2" +using assms dtree_inj_on unfolding inj_on_def by auto + +lemma dtree_lift: +assumes "dtree tr" +shows "lift dtree (cont tr)" +using assms unfolding dtree.simps by auto + + +(* coinduction:*) +lemma dtree_coind[elim, consumes 1, case_names Hyp]: +assumes phi: "\ tr" +and Hyp: +"\ tr. \ tr \ + (root tr, image (id \ root) (cont tr)) \ P \ + inj_on root (Inr -` cont tr) \ + lift (\ tr. \ tr \ dtree tr) (cont tr)" +shows "dtree tr" +apply(rule dtree.coinduct[of \ tr, OF phi]) +using Hyp by blast + +lemma dtree_raw_coind[elim, consumes 1, case_names Hyp]: +assumes phi: "\ tr" +and Hyp: +"\ tr. \ tr \ + (root tr, image (id \ root) (cont tr)) \ P \ + inj_on root (Inr -` cont tr) \ + lift \ (cont tr)" +shows "dtree tr" +using phi apply(induct rule: dtree_coind) +using Hyp mono_lift +by (metis (mono_tags) mono_lift) + +lemma dtree_subtr_inj_on: +assumes d: "dtree tr1" and s: "subtr ns tr tr1" +shows "inj_on root (Inr -` cont tr)" +using s d apply(induct rule: subtr.induct) +apply (metis (lifting) dtree_inj_on) by (metis dtree_lift lift_def) + +lemma dtree_subtr_P: +assumes d: "dtree tr1" and s: "subtr ns tr tr1" +shows "(root tr, (id \ root) ` cont tr) \ P" +using s d apply(induct rule: subtr.induct) +apply (metis (lifting) dtree_P) by (metis dtree_lift lift_def) + +lemma subtrOf_root[simp]: +assumes tr: "dtree tr" and cont: "Inr tr' \ cont tr" +shows "subtrOf tr (root tr') = tr'" +proof- + have 0: "Inr (subtrOf tr (root tr')) \ cont tr" using Inr_subtrOf + by (metis (lifting) cont root_prodOf) + have "root (subtrOf tr (root tr')) = root tr'" + using root_subtrOf by (metis (lifting) cont root_prodOf) + thus ?thesis unfolding dtree_inj[OF tr 0 cont] . +qed + +lemma surj_subtrOf: +assumes "dtree tr" and 0: "Inr tr' \ cont tr" +shows "\ n. Inr n \ prodOf tr \ subtrOf tr n = tr'" +apply(rule exI[of _ "root tr'"]) +using root_prodOf[OF 0] subtrOf_root[OF assms] by simp + +lemma dtree_subtr: +assumes "dtree tr1" and "subtr ns tr tr1" +shows "dtree tr" +proof- + have "(\ ns tr1. dtree tr1 \ subtr ns tr tr1) \ dtree tr" + proof (induct rule: dtree_raw_coind) + case (Hyp tr) + then obtain ns tr1 where tr1: "dtree tr1" and tr_tr1: "subtr ns tr tr1" by auto + show ?case unfolding lift_def proof safe + show "(root tr, (id \ root) ` cont tr) \ P" using dtree_subtr_P[OF tr1 tr_tr1] . + next + show "inj_on root (Inr -` cont tr)" using dtree_subtr_inj_on[OF tr1 tr_tr1] . + next + fix tr' assume tr': "Inr tr' \ cont tr" + have tr_tr1: "subtr (ns \ {root tr'}) tr tr1" using subtr_mono[OF tr_tr1] by auto + have "subtr (ns \ {root tr'}) tr' tr1" using subtr_StepL[OF _ tr' tr_tr1] by auto + thus "\ns' tr1. dtree tr1 \ subtr ns' tr' tr1" using tr1 by blast + qed + qed + thus ?thesis using assms by auto +qed + + +subsection{* Default trees *} + +(* Pick a left-hand side of a production for each nonterminal *) +definition S where "S n \ SOME tns. (n,tns) \ P" + +lemma S_P: "(n, S n) \ P" +using used unfolding S_def by(rule someI_ex) + +lemma finite_S: "finite (S n)" +using S_P finite_in_P by auto + + +(* The default tree of a nonterminal *) +definition deftr :: "N \ Tree" where +"deftr \ unfold id S" + +lemma deftr_simps[simp]: +"root (deftr n) = n" +"cont (deftr n) = image (id \ deftr) (S n)" +using unfold(1)[of id S n] unfold(2)[of S n id, OF finite_S] +unfolding deftr_def by simp_all + +lemmas root_deftr = deftr_simps(1) +lemmas cont_deftr = deftr_simps(2) + +lemma root_o_deftr[simp]: "root o deftr = id" +by (rule ext, auto) + +lemma dtree_deftr: "dtree (deftr n)" +proof- + {fix tr assume "\ n. tr = deftr n" hence "dtree tr" + apply(induct rule: dtree_raw_coind) apply safe + unfolding deftr_simps image_compose[symmetric] sum_map.comp id_o + root_o_deftr sum_map.id image_id id_apply apply(rule S_P) + unfolding inj_on_def lift_def by auto + } + thus ?thesis by auto +qed + + +subsection{* Hereditary substitution *} + +(* Auxiliary concept: The root-ommiting frontier: *) +definition "inFrr ns tr t \ \ tr'. Inr tr' \ cont tr \ inFr ns tr' t" +definition "Frr ns tr \ {t. \ tr'. Inr tr' \ cont tr \ t \ Fr ns tr'}" + +context +fixes tr0 :: Tree +begin + +definition "hsubst_r tr \ root tr" +definition "hsubst_c tr \ if root tr = root tr0 then cont tr0 else cont tr" + +(* Hereditary substitution: *) +definition hsubst :: "Tree \ Tree" where +"hsubst \ unfold hsubst_r hsubst_c" + +lemma finite_hsubst_c: "finite (hsubst_c n)" +unfolding hsubst_c_def by (metis (full_types) finite_cont) + +lemma root_hsubst[simp]: "root (hsubst tr) = root tr" +using unfold(1)[of hsubst_r hsubst_c tr] unfolding hsubst_def hsubst_r_def by simp + +lemma root_o_subst[simp]: "root o hsubst = root" +unfolding comp_def root_hsubst .. + +lemma cont_hsubst_eq[simp]: +assumes "root tr = root tr0" +shows "cont (hsubst tr) = (id \ hsubst) ` (cont tr0)" +apply(subst id_o[symmetric, of id]) unfolding id_o +using unfold(2)[of hsubst_c tr hsubst_r, OF finite_hsubst_c] +unfolding hsubst_def hsubst_c_def using assms by simp + +lemma hsubst_eq: +assumes "root tr = root tr0" +shows "hsubst tr = hsubst tr0" +apply(rule Tree_cong) using assms cont_hsubst_eq by auto + +lemma cont_hsubst_neq[simp]: +assumes "root tr \ root tr0" +shows "cont (hsubst tr) = (id \ hsubst) ` (cont tr)" +apply(subst id_o[symmetric, of id]) unfolding id_o +using unfold(2)[of hsubst_c tr hsubst_r, OF finite_hsubst_c] +unfolding hsubst_def hsubst_c_def using assms by simp + +lemma Inl_cont_hsubst_eq[simp]: +assumes "root tr = root tr0" +shows "Inl -` cont (hsubst tr) = Inl -` (cont tr0)" +unfolding cont_hsubst_eq[OF assms] by simp + +lemma Inr_cont_hsubst_eq[simp]: +assumes "root tr = root tr0" +shows "Inr -` cont (hsubst tr) = hsubst ` Inr -` cont tr0" +unfolding cont_hsubst_eq[OF assms] by simp + +lemma Inl_cont_hsubst_neq[simp]: +assumes "root tr \ root tr0" +shows "Inl -` cont (hsubst tr) = Inl -` (cont tr)" +unfolding cont_hsubst_neq[OF assms] by simp + +lemma Inr_cont_hsubst_neq[simp]: +assumes "root tr \ root tr0" +shows "Inr -` cont (hsubst tr) = hsubst ` Inr -` cont tr" +unfolding cont_hsubst_neq[OF assms] by simp + +lemma dtree_hsubst: +assumes tr0: "dtree tr0" and tr: "dtree tr" +shows "dtree (hsubst tr)" +proof- + {fix tr1 have "(\ tr. dtree tr \ tr1 = hsubst tr) \ dtree tr1" + proof (induct rule: dtree_raw_coind) + case (Hyp tr1) then obtain tr + where dtr: "dtree tr" and tr1: "tr1 = hsubst tr" by auto + show ?case unfolding lift_def tr1 proof safe + show "(root (hsubst tr), prodOf (hsubst tr)) \ P" + unfolding tr1 apply(cases "root tr = root tr0") + using dtree_P[OF dtr] dtree_P[OF tr0] + by (auto simp add: image_compose[symmetric] sum_map.comp) + show "inj_on root (Inr -` cont (hsubst tr))" + apply(cases "root tr = root tr0") using dtree_inj_on[OF dtr] dtree_inj_on[OF tr0] + unfolding inj_on_def by (auto, blast) + fix tr' assume "Inr tr' \ cont (hsubst tr)" + thus "\tra. dtree tra \ tr' = hsubst tra" + apply(cases "root tr = root tr0", simp_all) + apply (metis dtree_lift lift_def tr0) + by (metis dtr dtree_lift lift_def) + qed + qed + } + thus ?thesis using assms by blast +qed + +lemma Frr: "Frr ns tr = {t. inFrr ns tr t}" +unfolding inFrr_def Frr_def Fr_def by auto + +lemma inFr_hsubst_imp: +assumes "inFr ns (hsubst tr) t" +shows "t \ Inl -` (cont tr0) \ inFrr (ns - {root tr0}) tr0 t \ + inFr (ns - {root tr0}) tr t" +proof- + {fix tr1 + have "inFr ns tr1 t \ + (\ tr. tr1 = hsubst tr \ (t \ Inl -` (cont tr0) \ inFrr (ns - {root tr0}) tr0 t \ + inFr (ns - {root tr0}) tr t))" + proof(induct rule: inFr.induct) + case (Base tr1 ns t tr) + hence rtr: "root tr1 \ ns" and t_tr1: "Inl t \ cont tr1" and tr1: "tr1 = hsubst tr" + by auto + show ?case + proof(cases "root tr1 = root tr0") + case True + hence "t \ Inl -` (cont tr0)" using t_tr1 unfolding tr1 by auto + thus ?thesis by simp + next + case False + hence "inFr (ns - {root tr0}) tr t" using t_tr1 unfolding tr1 apply simp + by (metis Base.prems Diff_iff root_hsubst inFr.Base rtr singletonE) + thus ?thesis by simp + qed + next + case (Ind tr1 ns tr1' t) note IH = Ind(4) + have rtr1: "root tr1 \ ns" and tr1'_tr1: "Inr tr1' \ cont tr1" + and t_tr1': "inFr ns tr1' t" and tr1: "tr1 = hsubst tr" using Ind by auto + have rtr1: "root tr1 = root tr" unfolding tr1 by simp + show ?case + proof(cases "root tr1 = root tr0") + case True + then obtain tr' where tr'_tr0: "Inr tr' \ cont tr0" and tr1': "tr1' = hsubst tr'" + using tr1'_tr1 unfolding tr1 by auto + show ?thesis using IH[OF tr1'] proof (elim disjE) + assume "inFr (ns - {root tr0}) tr' t" + thus ?thesis using tr'_tr0 unfolding inFrr_def by auto + qed auto + next + case False + then obtain tr' where tr'_tr: "Inr tr' \ cont tr" and tr1': "tr1' = hsubst tr'" + using tr1'_tr1 unfolding tr1 by auto + show ?thesis using IH[OF tr1'] proof (elim disjE) + assume "inFr (ns - {root tr0}) tr' t" + thus ?thesis using tr'_tr unfolding inFrr_def + by (metis Diff_iff False Ind(1) empty_iff inFr2_Ind inFr_inFr2 insert_iff rtr1) + qed auto + qed + qed + } + thus ?thesis using assms by auto +qed + +lemma inFr_hsubst_notin: +assumes "inFr ns tr t" and "root tr0 \ ns" +shows "inFr ns (hsubst tr) t" +using assms apply(induct rule: inFr.induct) +apply (metis Inl_cont_hsubst_neq inFr2.Base inFr_inFr2 root_hsubst vimageD vimageI2) +by (metis (lifting) Inr_cont_hsubst_neq inFr.Ind rev_image_eqI root_hsubst vimageD vimageI2) + +lemma inFr_hsubst_minus: +assumes "inFr (ns - {root tr0}) tr t" +shows "inFr ns (hsubst tr) t" +proof- + have 1: "inFr (ns - {root tr0}) (hsubst tr) t" + using inFr_hsubst_notin[OF assms] by simp + show ?thesis using inFr_mono[OF 1] by auto +qed + +lemma inFr_self_hsubst: +assumes "root tr0 \ ns" +shows +"inFr ns (hsubst tr0) t \ + t \ Inl -` (cont tr0) \ inFrr (ns - {root tr0}) tr0 t" +(is "?A \ ?B \ ?C") +apply(intro iffI) +apply (metis inFr_hsubst_imp Diff_iff inFr_root_in insertI1) proof(elim disjE) + assume ?B thus ?A apply(intro inFr.Base) using assms by auto +next + assume ?C then obtain tr where + tr_tr0: "Inr tr \ cont tr0" and t_tr: "inFr (ns - {root tr0}) tr t" + unfolding inFrr_def by auto + def tr1 \ "hsubst tr" + have 1: "inFr ns tr1 t" using t_tr unfolding tr1_def using inFr_hsubst_minus by auto + have "Inr tr1 \ cont (hsubst tr0)" unfolding tr1_def using tr_tr0 by auto + thus ?A using 1 inFr.Ind assms by (metis root_hsubst) +qed + +theorem Fr_self_hsubst: +assumes "root tr0 \ ns" +shows "Fr ns (hsubst tr0) = Inl -` (cont tr0) \ Frr (ns - {root tr0}) tr0" +using inFr_self_hsubst[OF assms] unfolding Frr Fr_def by auto + +end (* context *) + + +subsection{* Regular trees *} + +hide_const regular + +definition "reg f tr \ \ tr'. subtr UNIV tr' tr \ tr' = f (root tr')" +definition "regular tr \ \ f. reg f tr" + +lemma reg_def2: "reg f tr \ (\ ns tr'. subtr ns tr' tr \ tr' = f (root tr'))" +unfolding reg_def using subtr_mono by (metis subset_UNIV) + +lemma regular_def2: "regular tr \ (\ f. reg f tr \ (\ n. root (f n) = n))" +unfolding regular_def proof safe + fix f assume f: "reg f tr" + def g \ "\ n. if inItr UNIV tr n then f n else deftr n" + show "\g. reg g tr \ (\n. root (g n) = n)" + apply(rule exI[of _ g]) + using f deftr_simps(1) unfolding g_def reg_def apply safe + apply (metis (lifting) inItr.Base subtr_inItr subtr_rootL_in) + by (metis (full_types) inItr_subtr) +qed auto + +lemma reg_root: +assumes "reg f tr" +shows "f (root tr) = tr" +using assms unfolding reg_def +by (metis (lifting) iso_tuple_UNIV_I subtr.Refl) + + +lemma reg_Inr_cont: +assumes "reg f tr" and "Inr tr' \ cont tr" +shows "reg f tr'" +by (metis (lifting) assms iso_tuple_UNIV_I reg_def subtr.Step) + +lemma reg_subtr: +assumes "reg f tr" and "subtr ns tr' tr" +shows "reg f tr'" +using assms unfolding reg_def using subtr_trans[of UNIV tr] UNIV_I +by (metis UNIV_eq_I UnCI Un_upper1 iso_tuple_UNIV_I subtr_mono subtr_trans) + +lemma regular_subtr: +assumes r: "regular tr" and s: "subtr ns tr' tr" +shows "regular tr'" +using r reg_subtr[OF _ s] unfolding regular_def by auto + +lemma subtr_deftr: +assumes "subtr ns tr' (deftr n)" +shows "tr' = deftr (root tr')" +proof- + {fix tr have "subtr ns tr' tr \ (\ n. tr = deftr n \ tr' = deftr (root tr'))" + apply (induct rule: subtr.induct) + proof(metis (lifting) deftr_simps(1), safe) + fix tr3 ns tr1 tr2 n + assume 1: "root (deftr n) \ ns" and 2: "subtr ns tr1 tr2" + and IH: "\n. tr2 = deftr n \ tr1 = deftr (root tr1)" + and 3: "Inr tr2 \ cont (deftr n)" + have "tr2 \ deftr ` UNIV" + using 3 unfolding deftr_simps image_def + by (metis (lifting, full_types) 3 CollectI Inr_oplus_iff cont_deftr + iso_tuple_UNIV_I) + then obtain n where "tr2 = deftr n" by auto + thus "tr1 = deftr (root tr1)" using IH by auto + qed + } + thus ?thesis using assms by auto +qed + +lemma reg_deftr: "reg deftr (deftr n)" +unfolding reg_def using subtr_deftr by auto + +lemma dtree_subtrOf_Union: +assumes "dtree tr" +shows "\{K tr' |tr'. Inr tr' \ cont tr} = + \{K (subtrOf tr n) |n. Inr n \ prodOf tr}" +unfolding Union_eq Bex_def mem_Collect_eq proof safe + fix x xa tr' + assume x: "x \ K tr'" and tr'_tr: "Inr tr' \ cont tr" + show "\X. (\n. X = K (subtrOf tr n) \ Inr n \ prodOf tr) \ x \ X" + apply(rule exI[of _ "K (subtrOf tr (root tr'))"]) apply(intro conjI) + apply(rule exI[of _ "root tr'"]) apply (metis (lifting) root_prodOf tr'_tr) + by (metis (lifting) assms subtrOf_root tr'_tr x) +next + fix x X n ttr + assume x: "x \ K (subtrOf tr n)" and n: "Inr n = (id \ root) ttr" and ttr: "ttr \ cont tr" + show "\X. (\tr'. X = K tr' \ Inr tr' \ cont tr) \ x \ X" + apply(rule exI[of _ "K (subtrOf tr n)"]) apply(intro conjI) + apply(rule exI[of _ "subtrOf tr n"]) apply (metis imageI n subtrOf ttr) + using x . +qed + + + + +subsection {* Paths in a regular tree *} + +inductive path :: "(N \ Tree) \ N list \ bool" for f where +Base: "path f [n]" +| +Ind: "\path f (n1 # nl); Inr (f n1) \ cont (f n)\ + \ path f (n # n1 # nl)" + +lemma path_NE: +assumes "path f nl" +shows "nl \ Nil" +using assms apply(induct rule: path.induct) by auto + +lemma path_post: +assumes f: "path f (n # nl)" and nl: "nl \ []" +shows "path f nl" +proof- + obtain n1 nl1 where nl: "nl = n1 # nl1" using nl by (cases nl, auto) + show ?thesis using assms unfolding nl using path.simps by (metis (lifting) list.inject) +qed + +lemma path_post_concat: +assumes "path f (nl1 @ nl2)" and "nl2 \ Nil" +shows "path f nl2" +using assms apply (induct nl1) +apply (metis append_Nil) by (metis Nil_is_append_conv append_Cons path_post) + +lemma path_concat: +assumes "path f nl1" and "path f ((last nl1) # nl2)" +shows "path f (nl1 @ nl2)" +using assms apply(induct rule: path.induct) apply simp +by (metis append_Cons last.simps list.simps(3) path.Ind) + +lemma path_distinct: +assumes "path f nl" +shows "\ nl'. path f nl' \ hd nl' = hd nl \ last nl' = last nl \ + set nl' \ set nl \ distinct nl'" +using assms proof(induct rule: length_induct) + case (1 nl) hence p_nl: "path f nl" by simp + then obtain n nl1 where nl: "nl = n # nl1" by (metis list.exhaust path_NE) + show ?case + proof(cases nl1) + case Nil + show ?thesis apply(rule exI[of _ nl]) using path.Base unfolding nl Nil by simp + next + case (Cons n1 nl2) + hence p1: "path f nl1" by (metis list.simps(3) nl p_nl path_post) + show ?thesis + proof(cases "n \ set nl1") + case False + obtain nl1' where p1': "path f nl1'" and hd_nl1': "hd nl1' = hd nl1" and + l_nl1': "last nl1' = last nl1" and d_nl1': "distinct nl1'" + and s_nl1': "set nl1' \ set nl1" + using 1(1)[THEN allE[of _ nl1]] p1 unfolding nl by auto + obtain nl2' where nl1': "nl1' = n1 # nl2'" using path_NE[OF p1'] hd_nl1' + unfolding Cons by(cases nl1', auto) + show ?thesis apply(intro exI[of _ "n # nl1'"]) unfolding nl proof safe + show "path f (n # nl1')" unfolding nl1' + apply(rule path.Ind, metis nl1' p1') + by (metis (lifting) Cons list.inject nl p1 p_nl path.simps path_NE) + qed(insert l_nl1' Cons nl1' s_nl1' d_nl1' False, auto) + next + case True + then obtain nl11 nl12 where nl1: "nl1 = nl11 @ n # nl12" + by (metis split_list) + have p12: "path f (n # nl12)" + apply(rule path_post_concat[of _ "n # nl11"]) using p_nl[unfolded nl nl1] by auto + obtain nl12' where p1': "path f nl12'" and hd_nl12': "hd nl12' = n" and + l_nl12': "last nl12' = last (n # nl12)" and d_nl12': "distinct nl12'" + and s_nl12': "set nl12' \ {n} \ set nl12" + using 1(1)[THEN allE[of _ "n # nl12"]] p12 unfolding nl nl1 by auto + thus ?thesis apply(intro exI[of _ nl12']) unfolding nl nl1 by auto + qed + qed +qed + +lemma path_subtr: +assumes f: "\ n. root (f n) = n" +and p: "path f nl" +shows "subtr (set nl) (f (last nl)) (f (hd nl))" +using p proof (induct rule: path.induct) + case (Ind n1 nl n) let ?ns1 = "insert n1 (set nl)" + have "path f (n1 # nl)" + and "subtr ?ns1 (f (last (n1 # nl))) (f n1)" + and fn1: "Inr (f n1) \ cont (f n)" using Ind by simp_all + hence fn1_flast: "subtr (insert n ?ns1) (f (last (n1 # nl))) (f n1)" + by (metis subset_insertI subtr_mono) + have 1: "last (n # n1 # nl) = last (n1 # nl)" by auto + have "subtr (insert n ?ns1) (f (last (n1 # nl))) (f n)" + using f subtr.Step[OF _ fn1_flast fn1] by auto + thus ?case unfolding 1 by simp +qed (metis f hd.simps last_ConsL last_in_set not_Cons_self2 subtr.Refl) + +lemma reg_subtr_path_aux: +assumes f: "reg f tr" and n: "subtr ns tr1 tr" +shows "\ nl. path f nl \ f (hd nl) = tr \ f (last nl) = tr1 \ set nl \ ns" +using n f proof(induct rule: subtr.induct) + case (Refl tr ns) + thus ?case + apply(intro exI[of _ "[root tr]"]) apply simp by (metis (lifting) path.Base reg_root) +next + case (Step tr ns tr2 tr1) + hence rtr: "root tr \ ns" and tr1_tr: "Inr tr1 \ cont tr" + and tr2_tr1: "subtr ns tr2 tr1" and tr: "reg f tr" by auto + have tr1: "reg f tr1" using reg_subtr[OF tr] rtr tr1_tr + by (metis (lifting) Step.prems iso_tuple_UNIV_I reg_def subtr.Step) + obtain nl where nl: "path f nl" and f_nl: "f (hd nl) = tr1" + and last_nl: "f (last nl) = tr2" and set: "set nl \ ns" using Step(3)[OF tr1] by auto + have 0: "path f (root tr # nl)" apply (subst path.simps) + using f_nl nl reg_root tr tr1_tr by (metis hd.simps neq_Nil_conv) + show ?case apply(rule exI[of _ "(root tr) # nl"]) + using 0 reg_root tr last_nl nl path_NE rtr set by auto +qed + +lemma reg_subtr_path: +assumes f: "reg f tr" and n: "subtr ns tr1 tr" +shows "\ nl. distinct nl \ path f nl \ f (hd nl) = tr \ f (last nl) = tr1 \ set nl \ ns" +using reg_subtr_path_aux[OF assms] path_distinct[of f] +by (metis (lifting) order_trans) + +lemma subtr_iff_path: +assumes r: "reg f tr" and f: "\ n. root (f n) = n" +shows "subtr ns tr1 tr \ + (\ nl. distinct nl \ path f nl \ f (hd nl) = tr \ f (last nl) = tr1 \ set nl \ ns)" +proof safe + fix nl assume p: "path f nl" and nl: "set nl \ ns" + have "subtr (set nl) (f (last nl)) (f (hd nl))" + apply(rule path_subtr) using p f by simp_all + thus "subtr ns (f (last nl)) (f (hd nl))" + using subtr_mono nl by auto +qed(insert reg_subtr_path[OF r], auto) + +lemma inFr_iff_path: +assumes r: "reg f tr" and f: "\ n. root (f n) = n" +shows +"inFr ns tr t \ + (\ nl tr1. distinct nl \ path f nl \ f (hd nl) = tr \ f (last nl) = tr1 \ + set nl \ ns \ Inl t \ cont tr1)" +apply safe +apply (metis (no_types) inFr_subtr r reg_subtr_path) +by (metis f inFr.Base path_subtr subtr_inFr subtr_mono subtr_rootL_in) + + + +subsection{* The regular cut of a tree *} + +context fixes tr0 :: Tree +begin + +(* Picking a subtree of a certain root: *) +definition "pick n \ SOME tr. subtr UNIV tr tr0 \ root tr = n" + +lemma pick: +assumes "inItr UNIV tr0 n" +shows "subtr UNIV (pick n) tr0 \ root (pick n) = n" +proof- + have "\ tr. subtr UNIV tr tr0 \ root tr = n" + using assms by (metis (lifting) inItr_subtr) + thus ?thesis unfolding pick_def by(rule someI_ex) +qed + +lemmas subtr_pick = pick[THEN conjunct1] +lemmas root_pick = pick[THEN conjunct2] + +lemma dtree_pick: +assumes tr0: "dtree tr0" and n: "inItr UNIV tr0 n" +shows "dtree (pick n)" +using dtree_subtr[OF tr0 subtr_pick[OF n]] . + +definition "regOf_r n \ root (pick n)" +definition "regOf_c n \ (id \ root) ` cont (pick n)" + +(* The regular tree of a function: *) +definition regOf :: "N \ Tree" where +"regOf \ unfold regOf_r regOf_c" + +lemma finite_regOf_c: "finite (regOf_c n)" +unfolding regOf_c_def by (metis finite_cont finite_imageI) + +lemma root_regOf_pick: "root (regOf n) = root (pick n)" +using unfold(1)[of regOf_r regOf_c n] unfolding regOf_def regOf_r_def by simp + +lemma root_regOf[simp]: +assumes "inItr UNIV tr0 n" +shows "root (regOf n) = n" +unfolding root_regOf_pick root_pick[OF assms] .. + +lemma cont_regOf[simp]: +"cont (regOf n) = (id \ (regOf o root)) ` cont (pick n)" +apply(subst id_o[symmetric, of id]) unfolding sum_map.comp[symmetric] +unfolding image_compose unfolding regOf_c_def[symmetric] +using unfold(2)[of regOf_c n regOf_r, OF finite_regOf_c] +unfolding regOf_def .. + +lemma Inl_cont_regOf[simp]: +"Inl -` (cont (regOf n)) = Inl -` (cont (pick n))" +unfolding cont_regOf by simp + +lemma Inr_cont_regOf: +"Inr -` (cont (regOf n)) = (regOf \ root) ` (Inr -` cont (pick n))" +unfolding cont_regOf by simp + +lemma subtr_regOf: +assumes n: "inItr UNIV tr0 n" and "subtr UNIV tr1 (regOf n)" +shows "\ n1. inItr UNIV tr0 n1 \ tr1 = regOf n1" +proof- + {fix tr ns assume "subtr UNIV tr1 tr" + hence "tr = regOf n \ (\ n1. inItr UNIV tr0 n1 \ tr1 = regOf n1)" + proof (induct rule: subtr_UNIV_inductL) + case (Step tr2 tr1 tr) + show ?case proof + assume "tr = regOf n" + then obtain n1 where tr2: "Inr tr2 \ cont tr1" + and tr1_tr: "subtr UNIV tr1 tr" and n1: "inItr UNIV tr0 n1" and tr1: "tr1 = regOf n1" + using Step by auto + obtain tr2' where tr2: "tr2 = regOf (root tr2')" + and tr2': "Inr tr2' \ cont (pick n1)" + using tr2 Inr_cont_regOf[of n1] + unfolding tr1 image_def o_def using vimage_eq by auto + have "inItr UNIV tr0 (root tr2')" + using inItr.Base inItr.Ind n1 pick subtr_inItr tr2' by (metis iso_tuple_UNIV_I) + thus "\n2. inItr UNIV tr0 n2 \ tr2 = regOf n2" using tr2 by blast + qed + qed(insert n, auto) + } + thus ?thesis using assms by auto +qed + +lemma root_regOf_root: +assumes n: "inItr UNIV tr0 n" and t_tr: "t_tr \ cont (pick n)" +shows "(id \ (root \ regOf \ root)) t_tr = (id \ root) t_tr" +using assms apply(cases t_tr) + apply (metis (lifting) sum_map.simps(1)) + using pick regOf_def regOf_r_def unfold(1) + inItr.Base o_apply subtr_StepL subtr_inItr sum_map.simps(2) + by (metis UNIV_I) + +lemma regOf_P: +assumes tr0: "dtree tr0" and n: "inItr UNIV tr0 n" +shows "(n, (id \ root) ` cont (regOf n)) \ P" (is "?L \ P") +proof- + have "?L = (n, (id \ root) ` cont (pick n))" + unfolding cont_regOf image_compose[symmetric] sum_map.comp id_o o_assoc + unfolding Pair_eq apply(rule conjI[OF refl]) apply(rule image_cong[OF refl]) + by(rule root_regOf_root[OF n]) + moreover have "... \ P" by (metis (lifting) dtree_pick root_pick dtree_P n tr0) + ultimately show ?thesis by simp +qed + +lemma dtree_regOf: +assumes tr0: "dtree tr0" and "inItr UNIV tr0 n" +shows "dtree (regOf n)" +proof- + {fix tr have "\ n. inItr UNIV tr0 n \ tr = regOf n \ dtree tr" + proof (induct rule: dtree_raw_coind) + case (Hyp tr) + then obtain n where n: "inItr UNIV tr0 n" and tr: "tr = regOf n" by auto + show ?case unfolding lift_def apply safe + apply (metis (lifting) regOf_P root_regOf n tr tr0) + unfolding tr Inr_cont_regOf unfolding inj_on_def apply clarsimp using root_regOf + apply (metis UNIV_I inItr.Base n pick subtr2.simps subtr_inItr subtr_subtr2) + by (metis n subtr.Refl subtr_StepL subtr_regOf tr UNIV_I) + qed + } + thus ?thesis using assms by blast +qed + +(* The regular cut of a tree: *) +definition "rcut \ regOf (root tr0)" + +theorem reg_rcut: "reg regOf rcut" +unfolding reg_def rcut_def +by (metis inItr.Base root_regOf subtr_regOf UNIV_I) + +lemma rcut_reg: +assumes "reg regOf tr0" +shows "rcut = tr0" +using assms unfolding rcut_def reg_def by (metis subtr.Refl UNIV_I) + +theorem rcut_eq: "rcut = tr0 \ reg regOf tr0" +using reg_rcut rcut_reg by metis + +theorem regular_rcut: "regular rcut" +using reg_rcut unfolding regular_def by blast + +theorem Fr_rcut: "Fr UNIV rcut \ Fr UNIV tr0" +proof safe + fix t assume "t \ Fr UNIV rcut" + then obtain tr where t: "Inl t \ cont tr" and tr: "subtr UNIV tr (regOf (root tr0))" + using Fr_subtr[of UNIV "regOf (root tr0)"] unfolding rcut_def + by (metis (full_types) Fr_def inFr_subtr mem_Collect_eq) + obtain n where n: "inItr UNIV tr0 n" and tr: "tr = regOf n" using tr + by (metis (lifting) inItr.Base subtr_regOf UNIV_I) + have "Inl t \ cont (pick n)" using t using Inl_cont_regOf[of n] unfolding tr + by (metis (lifting) vimageD vimageI2) + moreover have "subtr UNIV (pick n) tr0" using subtr_pick[OF n] .. + ultimately show "t \ Fr UNIV tr0" unfolding Fr_subtr_cont by auto +qed + +theorem dtree_rcut: +assumes "dtree tr0" +shows "dtree rcut" +unfolding rcut_def using dtree_regOf[OF assms inItr.Base] by simp + +theorem root_rcut[simp]: "root rcut = root tr0" +unfolding rcut_def +by (metis (lifting) root_regOf inItr.Base reg_def reg_root subtr_rootR_in) + +end (* context *) + + +subsection{* Recursive description of the regular tree frontiers *} + +lemma regular_inFr: +assumes r: "regular tr" and In: "root tr \ ns" +and t: "inFr ns tr t" +shows "t \ Inl -` (cont tr) \ + (\ tr'. Inr tr' \ cont tr \ inFr (ns - {root tr}) tr' t)" +(is "?L \ ?R") +proof- + obtain f where r: "reg f tr" and f: "\n. root (f n) = n" + using r unfolding regular_def2 by auto + obtain nl tr1 where d_nl: "distinct nl" and p: "path f nl" and hd_nl: "f (hd nl) = tr" + and l_nl: "f (last nl) = tr1" and s_nl: "set nl \ ns" and t_tr1: "Inl t \ cont tr1" + using t unfolding inFr_iff_path[OF r f] by auto + obtain n nl1 where nl: "nl = n # nl1" by (metis (lifting) p path.simps) + hence f_n: "f n = tr" using hd_nl by simp + have n_nl1: "n \ set nl1" using d_nl unfolding nl by auto + show ?thesis + proof(cases nl1) + case Nil hence "tr = tr1" using f_n l_nl unfolding nl by simp + hence ?L using t_tr1 by simp thus ?thesis by simp + next + case (Cons n1 nl2) note nl1 = Cons + have 1: "last nl1 = last nl" "hd nl1 = n1" unfolding nl nl1 by simp_all + have p1: "path f nl1" and n1_tr: "Inr (f n1) \ cont tr" + using path.simps[of f nl] p f_n unfolding nl nl1 by auto + have r1: "reg f (f n1)" using reg_Inr_cont[OF r n1_tr] . + have 0: "inFr (set nl1) (f n1) t" unfolding inFr_iff_path[OF r1 f] + apply(intro exI[of _ nl1], intro exI[of _ tr1]) + using d_nl unfolding 1 l_nl unfolding nl using p1 t_tr1 by auto + have root_tr: "root tr = n" by (metis f f_n) + have "inFr (ns - {root tr}) (f n1) t" apply(rule inFr_mono[OF 0]) + using s_nl unfolding root_tr unfolding nl using n_nl1 by auto + thus ?thesis using n1_tr by auto + qed +qed + +theorem regular_Fr: +assumes r: "regular tr" and In: "root tr \ ns" +shows "Fr ns tr = + Inl -` (cont tr) \ + \ {Fr (ns - {root tr}) tr' | tr'. Inr tr' \ cont tr}" +unfolding Fr_def +using In inFr.Base regular_inFr[OF assms] apply safe +apply (simp, metis (full_types) mem_Collect_eq) +apply simp +by (simp, metis (lifting) inFr_Ind_minus insert_Diff) + + +subsection{* The generated languages *} + +(* The (possibly inifinite tree) generated language *) +definition "L ns n \ {Fr ns tr | tr. dtree tr \ root tr = n}" + +(* The regular-tree generated language *) +definition "Lr ns n \ {Fr ns tr | tr. dtree tr \ root tr = n \ regular tr}" + +theorem L_rec_notin: +assumes "n \ ns" +shows "L ns n = {{}}" +using assms unfolding L_def apply safe + using not_root_Fr apply force + apply(rule exI[of _ "deftr n"]) + by (metis (no_types) dtree_deftr not_root_Fr root_deftr) + +theorem Lr_rec_notin: +assumes "n \ ns" +shows "Lr ns n = {{}}" +using assms unfolding Lr_def apply safe + using not_root_Fr apply force + apply(rule exI[of _ "deftr n"]) + by (metis (no_types) regular_def dtree_deftr not_root_Fr reg_deftr root_deftr) + +lemma dtree_subtrOf: +assumes "dtree tr" and "Inr n \ prodOf tr" +shows "dtree (subtrOf tr n)" +by (metis assms dtree_lift lift_def subtrOf) + +theorem Lr_rec_in: +assumes n: "n \ ns" +shows "Lr ns n \ +{Inl -` tns \ (\ {K n' | n'. Inr n' \ tns}) | tns K. + (n,tns) \ P \ + (\ n'. Inr n' \ tns \ K n' \ Lr (ns - {n}) n')}" +(is "Lr ns n \ {?F tns K | tns K. (n,tns) \ P \ ?\ tns K}") +proof safe + fix ts assume "ts \ Lr ns n" + then obtain tr where dtr: "dtree tr" and r: "root tr = n" and tr: "regular tr" + and ts: "ts = Fr ns tr" unfolding Lr_def by auto + def tns \ "(id \ root) ` (cont tr)" + def K \ "\ n'. Fr (ns - {n}) (subtrOf tr n')" + show "\tns K. ts = ?F tns K \ (n, tns) \ P \ ?\ tns K" + apply(rule exI[of _ tns], rule exI[of _ K]) proof(intro conjI allI impI) + show "ts = Inl -` tns \ \{K n' |n'. Inr n' \ tns}" + unfolding ts regular_Fr[OF tr n[unfolded r[symmetric]]] + unfolding tns_def K_def r[symmetric] + unfolding Inl_prodOf dtree_subtrOf_Union[OF dtr] .. + show "(n, tns) \ P" unfolding tns_def r[symmetric] using dtree_P[OF dtr] . + fix n' assume "Inr n' \ tns" thus "K n' \ Lr (ns - {n}) n'" + unfolding K_def Lr_def mem_Collect_eq apply(intro exI[of _ "subtrOf tr n'"]) + using dtr tr apply(intro conjI refl) unfolding tns_def + apply(erule dtree_subtrOf[OF dtr]) + apply (metis subtrOf) + by (metis Inr_subtrOf UNIV_I regular_subtr subtr.simps) + qed +qed + +lemma hsubst_aux: +fixes n ftr tns +assumes n: "n \ ns" and tns: "finite tns" and +1: "\ n'. Inr n' \ tns \ dtree (ftr n')" +defines "tr \ Node n ((id \ ftr) ` tns)" defines "tr' \ hsubst tr tr" +shows "Fr ns tr' = Inl -` tns \ \{Fr (ns - {n}) (ftr n') |n'. Inr n' \ tns}" +(is "_ = ?B") proof- + have rtr: "root tr = n" and ctr: "cont tr = (id \ ftr) ` tns" + unfolding tr_def using tns by auto + have Frr: "Frr (ns - {n}) tr = \{Fr (ns - {n}) (ftr n') |n'. Inr n' \ tns}" + unfolding Frr_def ctr by auto + have "Fr ns tr' = Inl -` (cont tr) \ Frr (ns - {n}) tr" + using Fr_self_hsubst[OF n[unfolded rtr[symmetric]]] unfolding tr'_def rtr .. + also have "... = ?B" unfolding ctr Frr by simp + finally show ?thesis . +qed + +theorem L_rec_in: +assumes n: "n \ ns" +shows " +{Inl -` tns \ (\ {K n' | n'. Inr n' \ tns}) | tns K. + (n,tns) \ P \ + (\ n'. Inr n' \ tns \ K n' \ L (ns - {n}) n')} + \ L ns n" +proof safe + fix tns K + assume P: "(n, tns) \ P" and 0: "\n'. Inr n' \ tns \ K n' \ L (ns - {n}) n'" + {fix n' assume "Inr n' \ tns" + hence "K n' \ L (ns - {n}) n'" using 0 by auto + hence "\ tr'. K n' = Fr (ns - {n}) tr' \ dtree tr' \ root tr' = n'" + unfolding L_def mem_Collect_eq by auto + } + then obtain ftr where 0: "\ n'. Inr n' \ tns \ + K n' = Fr (ns - {n}) (ftr n') \ dtree (ftr n') \ root (ftr n') = n'" + by metis + def tr \ "Node n ((id \ ftr) ` tns)" def tr' \ "hsubst tr tr" + have rtr: "root tr = n" and ctr: "cont tr = (id \ ftr) ` tns" + unfolding tr_def by (simp, metis P cont_Node finite_imageI finite_in_P) + have prtr: "prodOf tr = tns" apply(rule Inl_Inr_image_cong) + unfolding ctr apply simp apply simp apply safe + using 0 unfolding image_def apply force apply simp by (metis 0 vimageI2) + have 1: "{K n' |n'. Inr n' \ tns} = {Fr (ns - {n}) (ftr n') |n'. Inr n' \ tns}" + using 0 by auto + have dtr: "dtree tr" apply(rule dtree.Tree) + apply (metis (lifting) P prtr rtr) + unfolding inj_on_def ctr lift_def using 0 by auto + hence dtr': "dtree tr'" unfolding tr'_def by (metis dtree_hsubst) + have tns: "finite tns" using finite_in_P P by simp + have "Inl -` tns \ \{Fr (ns - {n}) (ftr n') |n'. Inr n' \ tns} \ L ns n" + unfolding L_def mem_Collect_eq apply(intro exI[of _ tr'] conjI) + using dtr' 0 hsubst_aux[OF assms tns, of ftr] unfolding tr_def tr'_def by auto + thus "Inl -` tns \ \{K n' |n'. Inr n' \ tns} \ L ns n" unfolding 1 . +qed + +lemma card_N: "(n::N) \ ns \ card (ns - {n}) < card ns" +by (metis finite_N Diff_UNIV Diff_infinite_finite card_Diff1_less finite.emptyI) + +function LL where +"LL ns n = + (if n \ ns then {{}} else + {Inl -` tns \ (\ {K n' | n'. Inr n' \ tns}) | tns K. + (n,tns) \ P \ + (\ n'. Inr n' \ tns \ K n' \ LL (ns - {n}) n')})" +by(pat_completeness, auto) +termination apply(relation "inv_image (measure card) fst") +using card_N by auto + +declare LL.simps[code] (* TODO: Does code generation for LL work? *) +declare LL.simps[simp del] + +theorem Lr_LL: "Lr ns n \ LL ns n" +proof (induct ns arbitrary: n rule: measure_induct[of card]) + case (1 ns n) show ?case proof(cases "n \ ns") + case False thus ?thesis unfolding Lr_rec_notin[OF False] by (simp add: LL.simps) + next + case True show ?thesis apply(rule subset_trans) + using Lr_rec_in[OF True] apply assumption + unfolding LL.simps[of ns n] using True 1 card_N proof clarsimp + fix tns K + assume "n \ ns" hence c: "card (ns - {n}) < card ns" using card_N by blast + assume "(n, tns) \ P" + and "\n'. Inr n' \ tns \ K n' \ Lr (ns - {n}) n'" + thus "\tnsa Ka. + Inl -` tns \ \{K n' |n'. Inr n' \ tns} = + Inl -` tnsa \ \{Ka n' |n'. Inr n' \ tnsa} \ + (n, tnsa) \ P \ (\n'. Inr n' \ tnsa \ Ka n' \ LL (ns - {n}) n')" + apply(intro exI[of _ tns] exI[of _ K]) using c 1 by auto + qed + qed +qed + +theorem LL_L: "LL ns n \ L ns n" +proof (induct ns arbitrary: n rule: measure_induct[of card]) + case (1 ns n) show ?case proof(cases "n \ ns") + case False thus ?thesis unfolding L_rec_notin[OF False] by (simp add: LL.simps) + next + case True show ?thesis apply(rule subset_trans) + prefer 2 using L_rec_in[OF True] apply assumption + unfolding LL.simps[of ns n] using True 1 card_N proof clarsimp + fix tns K + assume "n \ ns" hence c: "card (ns - {n}) < card ns" using card_N by blast + assume "(n, tns) \ P" + and "\n'. Inr n' \ tns \ K n' \ LL (ns - {n}) n'" + thus "\tnsa Ka. + Inl -` tns \ \{K n' |n'. Inr n' \ tns} = + Inl -` tnsa \ \{Ka n' |n'. Inr n' \ tnsa} \ + (n, tnsa) \ P \ (\n'. Inr n' \ tnsa \ Ka n' \ L (ns - {n}) n')" + apply(intro exI[of _ tns] exI[of _ K]) using c 1 by auto + qed + qed +qed + +(* The subsumpsion relation between languages *) +definition "subs L1 L2 \ \ ts2 \ L2. \ ts1 \ L1. ts1 \ ts2" + +lemma incl_subs[simp]: "L2 \ L1 \ subs L1 L2" +unfolding subs_def by auto + +lemma subs_refl[simp]: "subs L1 L1" unfolding subs_def by auto + +lemma subs_trans: "\subs L1 L2; subs L2 L3\ \ subs L1 L3" +unfolding subs_def by (metis subset_trans) + +(* Language equivalence *) +definition "leqv L1 L2 \ subs L1 L2 \ subs L2 L1" + +lemma subs_leqv[simp]: "leqv L1 L2 \ subs L1 L2" +unfolding leqv_def by auto + +lemma subs_leqv_sym[simp]: "leqv L1 L2 \ subs L2 L1" +unfolding leqv_def by auto + +lemma leqv_refl[simp]: "leqv L1 L1" unfolding leqv_def by auto + +lemma leqv_trans: +assumes 12: "leqv L1 L2" and 23: "leqv L2 L3" +shows "leqv L1 L3" +using assms unfolding leqv_def by (metis (lifting) subs_trans) + +lemma leqv_sym: "leqv L1 L2 \ leqv L2 L1" +unfolding leqv_def by auto + +lemma leqv_Sym: "leqv L1 L2 \ leqv L2 L1" +unfolding leqv_def by auto + +lemma Lr_incl_L: "Lr ns ts \ L ns ts" +unfolding Lr_def L_def by auto + +lemma Lr_subs_L: "subs (Lr UNIV ts) (L UNIV ts)" +unfolding subs_def proof safe + fix ts2 assume "ts2 \ L UNIV ts" + then obtain tr where ts2: "ts2 = Fr UNIV tr" and dtr: "dtree tr" and rtr: "root tr = ts" + unfolding L_def by auto + thus "\ts1\Lr UNIV ts. ts1 \ ts2" + apply(intro bexI[of _ "Fr UNIV (rcut tr)"]) + unfolding Lr_def L_def using Fr_rcut dtree_rcut root_rcut regular_rcut by auto +qed + +theorem Lr_leqv_L: "leqv (Lr UNIV ts) (L UNIV ts)" +using Lr_subs_L unfolding leqv_def by (metis (lifting) Lr_incl_L incl_subs) + +theorem LL_leqv_L: "leqv (LL UNIV ts) (L UNIV ts)" +by (metis (lifting) LL_L Lr_LL Lr_subs_L incl_subs leqv_def subs_trans) + +theorem LL_leqv_Lr: "leqv (LL UNIV ts) (Lr UNIV ts)" +using Lr_leqv_L LL_leqv_L by (metis leqv_Sym leqv_trans) + + +end