diff -r b87b14e885af -r 43f5dfb7fa35 src/HOL/Equiv_Relations.thy --- a/src/HOL/Equiv_Relations.thy Fri Jul 15 09:18:21 2022 +0200 +++ b/src/HOL/Equiv_Relations.thy Fri Jul 22 14:39:56 2022 +0200 @@ -264,11 +264,10 @@ assume cd: "(c,d) \ r1" then have "c \ A1" "d \ A1" using \equiv A1 r1\ by (auto elim!: equiv_type [THEN subsetD, THEN SigmaE2]) - with assms show "\ (f c ` r2 `` {a}) = \ (f d ` r2 `` {a})" - proof (simp add: UN_equiv_class congruent2_implies_congruent) - show "f c a = f d a" - using assms cd unfolding congruent2_def equiv_def refl_on_def by blast - qed + moreover have "f c a = f d a" + using assms cd unfolding congruent2_def equiv_def refl_on_def by blast + ultimately show "\ (f c ` r2 `` {a}) = \ (f d ` r2 `` {a})" + using assms by (simp add: UN_equiv_class congruent2_implies_congruent) qed lemma UN_equiv_class2: @@ -368,7 +367,7 @@ assume ?lhs then show ?rhs unfolding proj_def quotient_def - proof clarsimp + proof safe fix y assume y: "y \ A" and "r `` {x} = r `` {y}" moreover have "y \ r `` {y}"