diff -r dec96cb3fbe0 -r 440fe0937b92 src/Doc/Tutorial/Rules/Basic.thy --- a/src/Doc/Tutorial/Rules/Basic.thy Sun May 28 08:07:40 2017 +0200 +++ b/src/Doc/Tutorial/Rules/Basic.thy Sun May 28 11:32:15 2017 +0200 @@ -378,8 +378,8 @@ (*both can be done by blast, which however hasn't been introduced yet*) lemma "[| P (k::nat); \x. P x \ k \ x |] ==> (LEAST x. P(x)) = k" -apply (simp add: Least_def LeastM_def) -by (blast intro: some_equality order_antisym) +apply (simp add: Least_def) +by (blast intro: order_antisym) theorem axiom_of_choice': "(\x. \y. P x y) \ \f. \x. P x (f x)" apply (rule exI [of _ "\x. SOME y. P x y"])