diff -r 82cceaf768c8 -r 466599ecf610 src/HOL/FunDef.thy --- a/src/HOL/FunDef.thy Sun May 06 18:07:06 2007 +0200 +++ b/src/HOL/FunDef.thy Sun May 06 21:49:23 2007 +0200 @@ -100,22 +100,21 @@ setup FundefPackage.setup -lemma let_cong: - "M = N ==> (!!x. x = N ==> f x = g x) ==> Let M f = Let N g" +lemma let_cong [fundef_cong]: + "M = N \ (\x. x = N \ f x = g x) \ Let M f = Let N g" unfolding Let_def by blast lemmas [fundef_cong] = - let_cong if_cong image_cong INT_cong UN_cong bex_cong ball_cong imp_cong - + if_cong image_cong INT_cong UN_cong + bex_cong ball_cong imp_cong lemma split_cong [fundef_cong]: - "\ \x y. (x, y) = q \ f x y = g x y; p = q \ + "(\x y. (x, y) = q \ f x y = g x y) \ p = q \ split f p = split g q" by (auto simp: split_def) lemma comp_cong [fundef_cong]: - "f (g x) = f' (g' x') - ==> (f o g) x = (f' o g') x'" + "f (g x) = f' (g' x') \ (f o g) x = (f' o g') x'" unfolding o_apply . end