diff -r c98eb0d6615a -r 47455995693d src/HOL/MicroJava/Comp/LemmasComp.thy --- a/src/HOL/MicroJava/Comp/LemmasComp.thy Tue Jun 15 13:24:19 2004 +0200 +++ b/src/HOL/MicroJava/Comp/LemmasComp.thy Wed Jun 16 14:56:39 2004 +0200 @@ -105,21 +105,12 @@ lemma comp_is_type: "is_type (comp G) T = is_type G T" by ((cases T),simp,(induct G)) ((simp),(simp only: comp_is_class),(simp add: comp_is_class),(simp only: comp_is_class)) -lemma SIGMA_cong: "\ A = B; !!x. x \ B \ C x = D x \ - \ (\ x \ A. C x) = (\ x \ B. D x)" -by auto - lemma comp_classname: "is_class G C \ fst (the (class G C)) = fst (the (class (comp G) C))" by (case_tac "class G C", auto simp: is_class_def dest: comp_class_imp) - lemma comp_subcls1: "subcls1 (comp G) = subcls1 G" -apply (simp add: subcls1_def2 comp_is_class) -apply (rule SIGMA_cong, simp) -apply (simp add: comp_is_class) -apply (simp add: comp_classname) -done +by (auto simp add: subcls1_def2 comp_classname comp_is_class) lemma comp_widen: "((ty1,ty2) \ widen (comp G)) = ((ty1,ty2) \ widen G)" apply rule