diff -r 12585dfb86fe -r 480978f80eae src/HOL/HOLCF/Domain.thy --- a/src/HOL/HOLCF/Domain.thy Thu Jan 06 21:06:18 2011 +0100 +++ b/src/HOL/HOLCF/Domain.thy Thu Jan 06 16:52:35 2011 -0800 @@ -105,7 +105,7 @@ assumes defl: "defl \ (\ a::'a itself. t)" assumes liftemb: "(liftemb :: 'a u \ udom u) \ u_map\emb" assumes liftprj: "(liftprj :: udom u \ 'a u) \ u_map\prj" - assumes liftdefl: "(liftdefl :: 'a itself \ _) \ (\t. pdefl\DEFL('a))" + assumes liftdefl: "(liftdefl :: 'a itself \ _) \ (\t. liftdefl_of\DEFL('a))" shows "OFCLASS('a, domain_class)" proof have emb_beta: "\x. emb\x = Rep x" @@ -233,9 +233,9 @@ unfolding isodefl_def by (simp add: cfun_eq_iff assms prj_emb_prj emb_prj_emb) -lemma isodefl'_pdefl: "isodefl d t \ isodefl' d (pdefl\t)" +lemma isodefl'_liftdefl_of: "isodefl d t \ isodefl' d (liftdefl_of\t)" unfolding isodefl_def isodefl'_def -by (simp add: cast_pdefl u_map_oo liftemb_eq liftprj_eq) +by (simp add: cast_liftdefl_of u_map_oo liftemb_eq liftprj_eq) lemma isodefl_sfun: "isodefl d1 t1 \ isodefl d2 t2 \ @@ -326,7 +326,7 @@ lemmas [domain_isodefl] = isodefl_u isodefl_sfun isodefl_ssum isodefl_sprod - isodefl_cfun isodefl_prod isodefl_prod_u isodefl'_pdefl + isodefl_cfun isodefl_prod isodefl_prod_u isodefl'_liftdefl_of lemmas [domain_deflation] = deflation_cfun_map deflation_sfun_map deflation_ssum_map