diff -r 3e8cbb624cc5 -r 48a745e1bde7 src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy --- a/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Tue May 06 23:35:24 2014 +0200 +++ b/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Wed May 07 12:25:35 2014 +0200 @@ -28,6 +28,7 @@ fixes c :: "'a::real_field" shows "of_nat (Suc n) * c / of_nat (fact (Suc n)) = c / of_nat (fact n)" by (simp add: of_nat_mult del: of_nat_Suc times_nat.simps) + lemma linear_times: fixes c::"'a::real_algebra" shows "linear (\x. c * x)" by (auto simp: linearI distrib_left) @@ -260,8 +261,8 @@ by (metis real_lim_sequentially setsum_in_Reals) lemma Lim_null_comparison_Re: - "eventually (\x. norm(f x) \ Re(g x)) F \ (g ---> 0) F \ (f ---> 0) F" - by (metis Lim_null_comparison complex_Re_zero tendsto_Re) + assumes "eventually (\x. norm(f x) \ Re(g x)) F" "(g ---> 0) F" shows "(f ---> 0) F" + by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp subsection{*Holomorphic functions*}