diff -r 77cbf472fcc9 -r 48d032035744 src/HOL/Library/Signed_Division.thy --- a/src/HOL/Library/Signed_Division.thy Thu Aug 18 09:29:11 2022 +0200 +++ b/src/HOL/Library/Signed_Division.thy Wed Aug 17 20:37:16 2022 +0000 @@ -7,9 +7,58 @@ imports Main begin -class signed_division = - fixes signed_divide :: \'a \ 'a \ 'a\ (infixl "sdiv" 70) - and signed_modulo :: \'a \ 'a \ 'a\ (infixl "smod" 70) +lemma sgn_div_eq_sgn_mult: + \sgn (a div b) = sgn (a * b)\ + if \a div b \ 0\ for a b :: int +proof - + have \0 \ \a\ div \b\\ + by (cases \b = 0\) (simp_all add: pos_imp_zdiv_nonneg_iff) + then have \\a\ div \b\ \ 0 \ 0 < \a\ div \b\\ + by (simp add: less_le) + also have \\ \ \a\ \ \b\\ + using that nonneg1_imp_zdiv_pos_iff by auto + finally have *: \\a\ div \b\ \ 0 \ \b\ \ \a\\ . + show ?thesis + using \0 \ \a\ div \b\\ that + by (auto simp add: div_eq_div_abs [of a b] div_eq_sgn_abs [of a b] + sgn_mult sgn_1_pos sgn_1_neg sgn_eq_0_iff nonneg1_imp_zdiv_pos_iff * dest: sgn_not_eq_imp) +qed + +class signed_division = comm_semiring_1_cancel + + fixes signed_divide :: \'a \ 'a \ 'a\ (infixl \sdiv\ 70) + and signed_modulo :: \'a \ 'a \ 'a\ (infixl \smod\ 70) + assumes sdiv_mult_smod_eq: \a sdiv b * b + a smod b = a\ +begin + +lemma mult_sdiv_smod_eq: + \b * (a sdiv b) + a smod b = a\ + using sdiv_mult_smod_eq [of a b] by (simp add: ac_simps) + +lemma smod_sdiv_mult_eq: + \a smod b + a sdiv b * b = a\ + using sdiv_mult_smod_eq [of a b] by (simp add: ac_simps) + +lemma smod_mult_sdiv_eq: + \a smod b + b * (a sdiv b) = a\ + using sdiv_mult_smod_eq [of a b] by (simp add: ac_simps) + +lemma minus_sdiv_mult_eq_smod: + \a - a sdiv b * b = a smod b\ + by (rule add_implies_diff [symmetric]) (fact smod_sdiv_mult_eq) + +lemma minus_mult_sdiv_eq_smod: + \a - b * (a sdiv b) = a smod b\ + by (rule add_implies_diff [symmetric]) (fact smod_mult_sdiv_eq) + +lemma minus_smod_eq_sdiv_mult: + \a - a smod b = a sdiv b * b\ + by (rule add_implies_diff [symmetric]) (fact sdiv_mult_smod_eq) + +lemma minus_smod_eq_mult_sdiv: + \a - a smod b = b * (a sdiv b)\ + by (rule add_implies_diff [symmetric]) (fact mult_sdiv_smod_eq) + +end instantiation int :: signed_division begin @@ -18,12 +67,45 @@ where \k sdiv l = sgn k * sgn l * (\k\ div \l\)\ for k l :: int definition signed_modulo_int :: \int \ int \ int\ - where \k smod l = k - (k sdiv l) * l\ for k l :: int + where \k smod l = sgn k * (\k\ mod \l\)\ for k l :: int -instance .. +instance by standard + (simp add: signed_divide_int_def signed_modulo_int_def div_abs_eq mod_abs_eq algebra_simps) end +lemma divide_int_eq_signed_divide_int: + \k div l = k sdiv l - of_bool (l \ 0 \ sgn k \ sgn l \ \ l dvd k)\ + for k l :: int + by (simp add: div_eq_div_abs [of k l] signed_divide_int_def) + +lemma signed_divide_int_eq_divide_int: + \k sdiv l = k div l + of_bool (l \ 0 \ sgn k \ sgn l \ \ l dvd k)\ + for k l :: int + by (simp add: divide_int_eq_signed_divide_int) + +lemma modulo_int_eq_signed_modulo_int: + \k mod l = k smod l + l * of_bool (sgn k \ sgn l \ \ l dvd k)\ + for k l :: int + by (simp add: mod_eq_mod_abs [of k l] signed_modulo_int_def) + +lemma signed_modulo_int_eq_modulo_int: + \k smod l = k mod l - l * of_bool (sgn k \ sgn l \ \ l dvd k)\ + for k l :: int + by (simp add: modulo_int_eq_signed_modulo_int) + +lemma sdiv_int_div_0: + "(x :: int) sdiv 0 = 0" + by (clarsimp simp: signed_divide_int_def) + +lemma sdiv_int_0_div [simp]: + "0 sdiv (x :: int) = 0" + by (clarsimp simp: signed_divide_int_def) + +lemma smod_int_alt_def: + "(a::int) smod b = sgn (a) * (abs a mod abs b)" + by (fact signed_modulo_int_def) + lemma int_sdiv_simps [simp]: "(a :: int) sdiv 1 = a" "(a :: int) sdiv 0 = 0" @@ -31,11 +113,13 @@ apply (auto simp: signed_divide_int_def sgn_if) done -lemma sgn_div_eq_sgn_mult: - "a div b \ 0 \ sgn ((a :: int) div b) = sgn (a * b)" - apply (clarsimp simp: sgn_if zero_le_mult_iff neg_imp_zdiv_nonneg_iff not_less) - apply (metis less_le mult_le_0_iff neg_imp_zdiv_neg_iff not_less pos_imp_zdiv_neg_iff zdiv_eq_0_iff) - done +lemma smod_int_mod_0 [simp]: + "x smod (0 :: int) = x" + by (clarsimp simp: signed_modulo_int_def abs_mult_sgn ac_simps) + +lemma smod_int_0_mod [simp]: + "0 smod (x :: int) = 0" + by (clarsimp simp: smod_int_alt_def) lemma sgn_sdiv_eq_sgn_mult: "a sdiv b \ 0 \ sgn ((a :: int) sdiv b) = sgn (a * b)" @@ -71,38 +155,17 @@ done lemma sdiv_int_range: - "(a :: int) sdiv b \ { - (abs a) .. (abs a) }" - apply (unfold signed_divide_int_def) - apply (subgoal_tac "(abs a) div (abs b) \ (abs a)") - apply (auto simp add: sgn_if not_less) - apply (metis le_less le_less_trans neg_equal_0_iff_equal neg_less_iff_less not_le pos_imp_zdiv_neg_iff) - apply (metis add.inverse_neutral div_int_pos_iff le_less neg_le_iff_le order_trans) - apply (metis div_minus_right le_less_trans neg_imp_zdiv_neg_iff neg_less_0_iff_less not_le) - using div_int_pos_iff apply fastforce - apply (auto simp add: abs_if not_less) - apply (metis add.inverse_inverse add_0_left div_by_1 div_minus_right less_le neg_0_le_iff_le not_le not_one_le_zero zdiv_mono2 zless_imp_add1_zle) - apply (metis div_by_1 neg_0_less_iff_less pos_imp_zdiv_pos_iff zdiv_mono2 zero_less_one) - apply (metis add.inverse_neutral div_by_0 div_by_1 int_div_less_self int_one_le_iff_zero_less less_le less_minus_iff order_refl) - apply (metis div_by_1 divide_int_def int_div_less_self less_le linorder_neqE_linordered_idom order_refl unique_euclidean_semiring_numeral_class.div_less) - done - -lemma sdiv_int_div_0 [simp]: - "(x :: int) sdiv 0 = 0" - by (clarsimp simp: signed_divide_int_def) - -lemma sdiv_int_0_div [simp]: - "0 sdiv (x :: int) = 0" - by (clarsimp simp: signed_divide_int_def) - -lemma smod_int_alt_def: - "(a::int) smod b = sgn (a) * (abs a mod abs b)" - apply (clarsimp simp: signed_modulo_int_def signed_divide_int_def) - apply (clarsimp simp: minus_div_mult_eq_mod [symmetric] abs_sgn sgn_mult sgn_if algebra_split_simps) - done + \a sdiv b \ {- \a\..\a\}\ for a b :: int + using zdiv_mono2 [of \\a\\ 1 \\b\\] + by (cases \b = 0\; cases \sgn b = sgn a\) + (auto simp add: signed_divide_int_def pos_imp_zdiv_nonneg_iff + dest!: sgn_not_eq_imp intro: order_trans [of _ 0]) lemma smod_int_range: - "b \ 0 \ (a::int) smod b \ { - abs b + 1 .. abs b - 1 }" - apply (case_tac "b > 0") + \a smod b \ {- \b\ + 1..\b\ - 1}\ + if \b \ 0\ for a b :: int + using that + apply (cases \b > 0\) apply (insert pos_mod_conj [where a=a and b=b])[1] apply (insert pos_mod_conj [where a="-a" and b=b])[1] apply (auto simp: smod_int_alt_def algebra_simps sgn_if @@ -129,14 +192,6 @@ apply (auto simp: add1_zle_eq smod_int_alt_def sgn_if) done -lemma smod_int_mod_0 [simp]: - "x smod (0 :: int) = x" - by (clarsimp simp: signed_modulo_int_def) - -lemma smod_int_0_mod [simp]: - "0 smod (x :: int) = 0" - by (clarsimp simp: smod_int_alt_def) - lemma smod_mod_positive: "\ 0 \ (a :: int); 0 \ b \ \ a smod b = a mod b" by (clarsimp simp: smod_int_alt_def zsgn_def)