diff -r 64e6d712af16 -r 48e2de1b1df5 src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy --- a/src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy Wed Nov 11 10:13:40 2015 +0100 +++ b/src/HOL/Probability/Nonnegative_Lebesgue_Integration.thy Wed Nov 11 10:28:22 2015 +0100 @@ -2719,4 +2719,32 @@ "UNIV = sets (uniform_count_measure UNIV) \ True" by(simp_all add: sets_uniform_count_measure) +subsubsection \Scaled measure\ + +lemma nn_integral_scale_measure': + assumes f: "f \ borel_measurable M" "\x. 0 \ f x" + shows "nn_integral (scale_measure r M) f = max 0 r * nn_integral M f" + using f +proof induction + case (cong f g) + thus ?case + by(simp add: cong.hyps space_scale_measure cong: nn_integral_cong_simp) +next + case (mult f c) + thus ?case + by(simp add: nn_integral_cmult max_def mult.assoc mult.left_commute) +next + case (add f g) + thus ?case + by(simp add: nn_integral_add ereal_right_distrib nn_integral_nonneg) +next + case (seq U) + thus ?case + by(simp add: nn_integral_monotone_convergence_SUP SUP_ereal_mult_left nn_integral_nonneg) +qed simp + +lemma nn_integral_scale_measure: + "f \ borel_measurable M \ nn_integral (scale_measure r M) f = max 0 r * nn_integral M f" +by(subst (1 2) nn_integral_max_0[symmetric])(rule nn_integral_scale_measure', simp_all) + end