diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Hilbert_Choice.thy --- a/src/HOL/Hilbert_Choice.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Hilbert_Choice.thy Fri Jun 26 10:20:33 2015 +0200 @@ -408,20 +408,20 @@ qed lemma Ex_inj_on_UNION_Sigma: - "\f. (inj_on f (\ i \ I. A i) \ f ` (\ i \ I. A i) \ (SIGMA i : I. A i))" + "\f. (inj_on f (\i \ I. A i) \ f ` (\i \ I. A i) \ (SIGMA i : I. A i))" proof let ?phi = "\ a i. i \ I \ a \ A i" let ?sm = "\ a. SOME i. ?phi a i" let ?f = "\a. (?sm a, a)" - have "inj_on ?f (\ i \ I. A i)" unfolding inj_on_def by auto + have "inj_on ?f (\i \ I. A i)" unfolding inj_on_def by auto moreover { { fix i a assume "i \ I" and "a \ A i" hence "?sm a \ I \ a \ A(?sm a)" using someI[of "?phi a" i] by auto } - hence "?f ` (\ i \ I. A i) \ (SIGMA i : I. A i)" by auto + hence "?f ` (\i \ I. A i) \ (SIGMA i : I. A i)" by auto } ultimately - show "inj_on ?f (\ i \ I. A i) \ ?f ` (\ i \ I. A i) \ (SIGMA i : I. A i)" + show "inj_on ?f (\i \ I. A i) \ ?f ` (\i \ I. A i) \ (SIGMA i : I. A i)" by auto qed