diff -r a645a0e6d790 -r 48fdff264eb2 src/HOL/Probability/Projective_Limit.thy --- a/src/HOL/Probability/Projective_Limit.thy Fri Jun 26 00:14:10 2015 +0200 +++ b/src/HOL/Probability/Projective_Limit.thy Fri Jun 26 10:20:33 2015 +0200 @@ -282,15 +282,15 @@ have Y_notempty: "\n. n \ 1 \ (Y n) \ {}" proof - fix n::nat assume "n \ 1" hence "Y n \ Z n" by fact - have "Y n = (\ i\{1..n}. emb I (J n) (emb (J n) (J i) (K i)))" using J J_mono + have "Y n = (\i\{1..n}. emb I (J n) (emb (J n) (J i) (K i)))" using J J_mono by (auto simp: Y_def Z'_def) - also have "\ = prod_emb I (\_. borel) (J n) (\ i\{1..n}. emb (J n) (J i) (K i))" + also have "\ = prod_emb I (\_. borel) (J n) (\i\{1..n}. emb (J n) (J i) (K i))" using `n \ 1` by (subst prod_emb_INT) auto finally have Y_emb: "Y n = prod_emb I (\_. borel) (J n) - (\ i\{1..n}. prod_emb (J n) (\_. borel) (J i) (K i))" . + (\i\{1..n}. prod_emb (J n) (\_. borel) (J i) (K i))" . hence "Y n \ ?G" using J J_mono K_sets `n \ 1` by (intro generatorI[OF _ _ _ _ Y_emb]) auto hence "\\G (Y n)\ \ \" unfolding Y_emb using J J_mono K_sets `n \ 1` by (subst mu_G_eq) (auto simp: limP_finite proj_sets mu_G_eq) @@ -317,11 +317,11 @@ (auto dest!: bspec[where x=n] simp: extensional_restrict emeasure_eq_measure prod_emb_iff simp del: limP_finite intro!: measure_Diff[symmetric] set_mp[OF K_B]) - also have subs: "Z n - Y n \ (\ i\{1..n}. (Z i - Z' i))" using Z' Z `n \ 1` + also have subs: "Z n - Y n \ (\i\{1..n}. (Z i - Z' i))" using Z' Z `n \ 1` unfolding Y_def by (force simp: decseq_def) - have "Z n - Y n \ ?G" "(\ i\{1..n}. (Z i - Z' i)) \ ?G" + have "Z n - Y n \ ?G" "(\i\{1..n}. (Z i - Z' i)) \ ?G" using `Z' _ \ ?G` `Z _ \ ?G` `Y _ \ ?G` by auto - hence "\G (Z n - Y n) \ \G (\ i\{1..n}. (Z i - Z' i))" + hence "\G (Z n - Y n) \ \G (\i\{1..n}. (Z i - Z' i))" using subs G.additive_increasing[OF positive_mu_G[OF `I \ {}`] additive_mu_G[OF `I \ {}`]] unfolding increasing_def by auto also have "\ \ (\ i\{1..n}. \G (Z i - Z' i))" using `Z _ \ ?G` `Z' _ \ ?G`