diff -r bbd2c7ffc02c -r 4a8743618257 src/HOL/Nitpick_Examples/Manual_Nits.thy --- a/src/HOL/Nitpick_Examples/Manual_Nits.thy Wed Nov 30 16:05:15 2011 +0100 +++ b/src/HOL/Nitpick_Examples/Manual_Nits.thy Wed Nov 30 16:27:10 2011 +0100 @@ -95,8 +95,9 @@ subsection {* 2.7. Typedefs, Records, Rationals, and Reals *} -typedef three = "{0\nat, 1, 2}" -by blast +definition "three = {0\nat, 1, 2}" +typedef (open) three = three +unfolding three_def by blast definition A :: three where "A \ Abs_three 0" definition B :: three where "B \ Abs_three 1" @@ -197,7 +198,10 @@ axiomatization. The examples also work unchanged with Lochbihler's "Coinductive_List" theory. *) -typedef 'a llist = "UNIV\('a list + (nat \ 'a)) set" by auto +definition "llist = (UNIV\('a list + (nat \ 'a)) set)" + +typedef (open) 'a llist = "llist\('a list + (nat \ 'a)) set" +unfolding llist_def by auto definition LNil where "LNil = Abs_llist (Inl [])"