diff -r eddcc7c726f3 -r 4a9167f377b0 src/HOL/Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Analysis/Convex_Euclidean_Space.thy Mon Mar 18 15:35:34 2019 +0000 +++ b/src/HOL/Analysis/Convex_Euclidean_Space.thy Tue Mar 19 16:14:51 2019 +0000 @@ -62,7 +62,7 @@ using g unfolding o_def id_def image_def by auto metis+ show ?thesis proof (rule closedin_closed_trans [of "range f"]) - show "closedin (subtopology euclidean (range f)) (f ` S)" + show "closedin (top_of_set (range f)) (f ` S)" using continuous_closedin_preimage [OF confg cgf] by simp show "closed (range f)" apply (rule closed_injective_image_subspace) @@ -319,7 +319,7 @@ subsection \Relative interior of a set\ definition%important "rel_interior S = - {x. \T. openin (subtopology euclidean (affine hull S)) T \ x \ T \ T \ S}" + {x. \T. openin (top_of_set (affine hull S)) T \ x \ T \ T \ S}" lemma rel_interior_mono: "\S \ T; affine hull S = affine hull T\ @@ -327,7 +327,7 @@ by (auto simp: rel_interior_def) lemma rel_interior_maximal: - "\T \ S; openin(subtopology euclidean (affine hull S)) T\ \ T \ (rel_interior S)" + "\T \ S; openin(top_of_set (affine hull S)) T\ \ T \ (rel_interior S)" by (auto simp: rel_interior_def) lemma rel_interior: @@ -651,20 +651,20 @@ definition%important "rel_open S \ rel_interior S = S" -lemma rel_open: "rel_open S \ openin (subtopology euclidean (affine hull S)) S" +lemma rel_open: "rel_open S \ openin (top_of_set (affine hull S)) S" unfolding rel_open_def rel_interior_def apply auto - using openin_subopen[of "subtopology euclidean (affine hull S)" S] + using openin_subopen[of "top_of_set (affine hull S)" S] apply auto done -lemma openin_rel_interior: "openin (subtopology euclidean (affine hull S)) (rel_interior S)" +lemma openin_rel_interior: "openin (top_of_set (affine hull S)) (rel_interior S)" apply (simp add: rel_interior_def) apply (subst openin_subopen, blast) done lemma openin_set_rel_interior: - "openin (subtopology euclidean S) (rel_interior S)" + "openin (top_of_set S) (rel_interior S)" by (rule openin_subset_trans [OF openin_rel_interior rel_interior_subset hull_subset]) lemma affine_rel_open: @@ -806,11 +806,11 @@ qed lemma rel_interior_eq: - "rel_interior s = s \ openin(subtopology euclidean (affine hull s)) s" + "rel_interior s = s \ openin(top_of_set (affine hull s)) s" using rel_open rel_open_def by blast lemma rel_interior_openin: - "openin(subtopology euclidean (affine hull s)) s \ rel_interior s = s" + "openin(top_of_set (affine hull s)) s \ rel_interior s = s" by (simp add: rel_interior_eq) lemma rel_interior_affine: @@ -1992,9 +1992,9 @@ proof - obtain e where "e > 0" and e: "cball a e \ T" using \open T\ \a \ T\ by (auto simp: open_contains_cball) - have "openin (subtopology euclidean S) {a}" + have "openin (top_of_set S) {a}" unfolding openin_open using that \a \ S\ by blast - moreover have "closedin (subtopology euclidean S) {a}" + moreover have "closedin (top_of_set S) {a}" by (simp add: assms) ultimately show "False" using \connected S\ connected_clopen S by blast