diff -r 227477f17c26 -r 4aa34bd43228 src/HOL/Probability/Projective_Family.thy --- a/src/HOL/Probability/Projective_Family.thy Wed Nov 28 15:38:12 2012 +0100 +++ b/src/HOL/Probability/Projective_Family.thy Wed Nov 28 15:59:18 2012 +0100 @@ -226,14 +226,14 @@ "J \ {} \ finite J \ J \ I \ X \ sets (Pi\<^isub>M J M) \ A = emb I J X \ A \ generator" unfolding generator_def by auto -definition +definition mu_G ("\G") where "\G A = (THE x. \J. J \ {} \ finite J \ J \ I \ (\X\sets (Pi\<^isub>M J M). A = emb I J X \ x = emeasure (limP J M P) X))" -lemma \G_spec: +lemma mu_G_spec: assumes J: "J \ {}" "finite J" "J \ I" "A = emb I J X" "X \ sets (Pi\<^isub>M J M)" shows "\G A = emeasure (limP J M P) X" - unfolding \G_def + unfolding mu_G_def proof (intro the_equality allI impI ballI) fix K Y assume K: "K \ {}" "finite K" "K \ I" "A = emb I K Y" "Y \ sets (Pi\<^isub>M K M)" have "emeasure (limP K M P) Y = emeasure (limP (K \ J) M P) (emb (K \ J) K Y)" @@ -245,9 +245,9 @@ finally show "emeasure (limP J M P) X = emeasure (limP K M P) Y" .. qed (insert J, force) -lemma \G_eq: +lemma mu_G_eq: "J \ {} \ finite J \ J \ I \ X \ sets (Pi\<^isub>M J M) \ \G (emb I J X) = emeasure (limP J M P) X" - by (intro \G_spec) auto + by (intro mu_G_spec) auto lemma generator_Ex: assumes *: "A \ generator" @@ -255,7 +255,7 @@ proof - from * obtain J X where J: "J \ {}" "finite J" "J \ I" "A = emb I J X" "X \ sets (Pi\<^isub>M J M)" unfolding generator_def by auto - with \G_spec[OF this] show ?thesis by auto + with mu_G_spec[OF this] show ?thesis by auto qed lemma generatorE: @@ -284,7 +284,7 @@ auto qed -lemma positive_\G: +lemma positive_mu_G: assumes "I \ {}" shows "positive generator \G" proof - @@ -302,7 +302,7 @@ qed qed -lemma additive_\G: +lemma additive_mu_G: assumes "I \ {}" shows "additive generator \G" proof - @@ -324,7 +324,7 @@ then have "\G (A \ B) = \G (emb I (J \ K) (emb (J \ K) J X \ emb (J \ K) K Y))" by simp also have "\ = emeasure (limP (J \ K) M P) (emb (J \ K) J X \ emb (J \ K) K Y)" - using JK J(1, 4) K(1, 4) by (simp add: \G_eq sets.Un del: prod_emb_Un) + using JK J(1, 4) K(1, 4) by (simp add: mu_G_eq sets.Un del: prod_emb_Un) also have "\ = \G A + \G B" using J K JK_disj by (simp add: plus_emeasure[symmetric]) finally show "\G (A \ B) = \G A + \G B" .