diff -r 5574d504cf36 -r 4ab9657b3257 src/HOL/Analysis/Abstract_Topology.thy --- a/src/HOL/Analysis/Abstract_Topology.thy Fri Dec 28 19:01:35 2018 +0100 +++ b/src/HOL/Analysis/Abstract_Topology.thy Sat Dec 29 15:43:53 2018 +0100 @@ -2433,7 +2433,7 @@ using openin_subset by fastforce lemma compactin_euclideanreal_iff [simp]: "compactin euclideanreal S \ compact S" - by (simp add: compact_eq_heine_borel compactin_def) meson + by (simp add: compact_eq_Heine_Borel compactin_def) meson lemma compactin_absolute [simp]: "compactin (subtopology X S) S \ compactin X S" @@ -2725,7 +2725,7 @@ lemma compact_space_discrete_topology: "compact_space(discrete_topology X) \ finite X" by (simp add: compactin_discrete_topology compact_space_def) -lemma compact_space_imp_bolzano_weierstrass: +lemma compact_space_imp_Bolzano_Weierstrass: assumes "compact_space X" "infinite S" "S \ topspace X" shows "X derived_set_of S \ {}" proof @@ -2738,19 +2738,19 @@ by (metis \infinite S\ compactin_subspace compact_space_discrete_topology inf_bot_right subtopology_eq_discrete_topology_eq) qed -lemma compactin_imp_bolzano_weierstrass: +lemma compactin_imp_Bolzano_Weierstrass: "\compactin X S; infinite T \ T \ S\ \ S \ X derived_set_of T \ {}" - using compact_space_imp_bolzano_weierstrass [of "subtopology X S"] + using compact_space_imp_Bolzano_Weierstrass [of "subtopology X S"] by (simp add: compactin_subspace derived_set_of_subtopology inf_absorb2 topspace_subtopology) -lemma compact_closure_of_imp_bolzano_weierstrass: +lemma compact_closure_of_imp_Bolzano_Weierstrass: "\compactin X (X closure_of S); infinite T; T \ S; T \ topspace X\ \ X derived_set_of T \ {}" - using closure_of_mono closure_of_subset compactin_imp_bolzano_weierstrass by fastforce + using closure_of_mono closure_of_subset compactin_imp_Bolzano_Weierstrass by fastforce lemma discrete_compactin_eq_finite: "S \ X derived_set_of S = {} \ compactin X S \ S \ topspace X \ finite S" apply (rule iffI) - using compactin_imp_bolzano_weierstrass compactin_subset_topspace apply blast + using compactin_imp_Bolzano_Weierstrass compactin_subset_topspace apply blast by (simp add: finite_imp_compactin_eq) lemma discrete_compact_space_eq_finite: