diff -r ae66c22ed52e -r 4b3de6370184 doc-src/TutorialI/Overview/RECDEF.thy --- a/doc-src/TutorialI/Overview/RECDEF.thy Wed Jun 26 10:26:46 2002 +0200 +++ b/doc-src/TutorialI/Overview/RECDEF.thy Wed Jun 26 11:07:14 2002 +0200 @@ -61,8 +61,14 @@ subsubsection{*Induction*} +text{* +Every recursive definition provides an induction theorem, for example +@{thm[source]sep.induct}: +@{thm[display,margin=70] sep.induct[no_vars]} +*} +(*<*)thm sep.induct[no_vars](*>*) + lemma "map f (sep(x,xs)) = sep(f x, map f xs)" -thm sep.induct apply(induct_tac x xs rule: sep.induct) apply simp_all done