diff -r 286255f131bf -r 4bed56dc95fb src/HOL/Predicate.thy --- a/src/HOL/Predicate.thy Wed Dec 08 13:34:50 2010 +0100 +++ b/src/HOL/Predicate.thy Wed Dec 08 13:34:50 2010 +0100 @@ -87,16 +87,16 @@ subsubsection {* Top and bottom elements *} lemma top1I [intro!]: "top x" - by (simp add: top_fun_eq top_bool_eq) + by (simp add: top_fun_def top_bool_def) lemma top2I [intro!]: "top x y" - by (simp add: top_fun_eq top_bool_eq) + by (simp add: top_fun_def top_bool_def) lemma bot1E [no_atp, elim!]: "bot x \ P" - by (simp add: bot_fun_eq bot_bool_eq) + by (simp add: bot_fun_def bot_bool_def) lemma bot2E [elim!]: "bot x y \ P" - by (simp add: bot_fun_eq bot_bool_eq) + by (simp add: bot_fun_def bot_bool_def) lemma bot_empty_eq: "bot = (\x. x \ {})" by (auto simp add: fun_eq_iff) @@ -108,22 +108,22 @@ subsubsection {* Binary union *} lemma sup1I1 [elim?]: "A x \ sup A B x" - by (simp add: sup_fun_eq sup_bool_eq) + by (simp add: sup_fun_def sup_bool_def) lemma sup2I1 [elim?]: "A x y \ sup A B x y" - by (simp add: sup_fun_eq sup_bool_eq) + by (simp add: sup_fun_def sup_bool_def) lemma sup1I2 [elim?]: "B x \ sup A B x" - by (simp add: sup_fun_eq sup_bool_eq) + by (simp add: sup_fun_def sup_bool_def) lemma sup2I2 [elim?]: "B x y \ sup A B x y" - by (simp add: sup_fun_eq sup_bool_eq) + by (simp add: sup_fun_def sup_bool_def) lemma sup1E [elim!]: "sup A B x ==> (A x ==> P) ==> (B x ==> P) ==> P" - by (simp add: sup_fun_eq sup_bool_eq) iprover + by (simp add: sup_fun_def sup_bool_def) iprover lemma sup2E [elim!]: "sup A B x y ==> (A x y ==> P) ==> (B x y ==> P) ==> P" - by (simp add: sup_fun_eq sup_bool_eq) iprover + by (simp add: sup_fun_def sup_bool_def) iprover text {* \medskip Classical introduction rule: no commitment to @{text A} vs @@ -131,49 +131,49 @@ *} lemma sup1CI [intro!]: "(~ B x ==> A x) ==> sup A B x" - by (auto simp add: sup_fun_eq sup_bool_eq) + by (auto simp add: sup_fun_def sup_bool_def) lemma sup2CI [intro!]: "(~ B x y ==> A x y) ==> sup A B x y" - by (auto simp add: sup_fun_eq sup_bool_eq) + by (auto simp add: sup_fun_def sup_bool_def) lemma sup_Un_eq: "sup (\x. x \ R) (\x. x \ S) = (\x. x \ R \ S)" - by (simp add: sup_fun_eq sup_bool_eq mem_def) + by (simp add: sup_fun_def sup_bool_def mem_def) lemma sup_Un_eq2 [pred_set_conv]: "sup (\x y. (x, y) \ R) (\x y. (x, y) \ S) = (\x y. (x, y) \ R \ S)" - by (simp add: sup_fun_eq sup_bool_eq mem_def) + by (simp add: sup_fun_def sup_bool_def mem_def) subsubsection {* Binary intersection *} lemma inf1I [intro!]: "A x ==> B x ==> inf A B x" - by (simp add: inf_fun_eq inf_bool_eq) + by (simp add: inf_fun_def inf_bool_def) lemma inf2I [intro!]: "A x y ==> B x y ==> inf A B x y" - by (simp add: inf_fun_eq inf_bool_eq) + by (simp add: inf_fun_def inf_bool_def) lemma inf1E [elim!]: "inf A B x ==> (A x ==> B x ==> P) ==> P" - by (simp add: inf_fun_eq inf_bool_eq) + by (simp add: inf_fun_def inf_bool_def) lemma inf2E [elim!]: "inf A B x y ==> (A x y ==> B x y ==> P) ==> P" - by (simp add: inf_fun_eq inf_bool_eq) + by (simp add: inf_fun_def inf_bool_def) lemma inf1D1: "inf A B x ==> A x" - by (simp add: inf_fun_eq inf_bool_eq) + by (simp add: inf_fun_def inf_bool_def) lemma inf2D1: "inf A B x y ==> A x y" - by (simp add: inf_fun_eq inf_bool_eq) + by (simp add: inf_fun_def inf_bool_def) lemma inf1D2: "inf A B x ==> B x" - by (simp add: inf_fun_eq inf_bool_eq) + by (simp add: inf_fun_def inf_bool_def) lemma inf2D2: "inf A B x y ==> B x y" - by (simp add: inf_fun_eq inf_bool_eq) + by (simp add: inf_fun_def inf_bool_def) lemma inf_Int_eq: "inf (\x. x \ R) (\x. x \ S) = (\x. x \ R \ S)" - by (simp add: inf_fun_eq inf_bool_eq mem_def) + by (simp add: inf_fun_def inf_bool_def mem_def) lemma inf_Int_eq2 [pred_set_conv]: "inf (\x y. (x, y) \ R) (\x y. (x, y) \ S) = (\x y. (x, y) \ R \ S)" - by (simp add: inf_fun_eq inf_bool_eq mem_def) + by (simp add: inf_fun_def inf_bool_def mem_def) subsubsection {* Unions of families *} @@ -286,11 +286,11 @@ elim: pred_compE dest: conversepD) lemma converse_meet: "(inf r s)^--1 = inf r^--1 s^--1" - by (simp add: inf_fun_eq inf_bool_eq) + by (simp add: inf_fun_def inf_bool_def) (iprover intro: conversepI ext dest: conversepD) lemma converse_join: "(sup r s)^--1 = sup r^--1 s^--1" - by (simp add: sup_fun_eq sup_bool_eq) + by (simp add: sup_fun_def sup_bool_def) (iprover intro: conversepI ext dest: conversepD) lemma conversep_noteq [simp]: "(op ~=)^--1 = op ~="