diff -r 27f3c10b0b50 -r 4cf66f21b764 src/HOL/Isar_Examples/Basic_Logic.thy --- a/src/HOL/Isar_Examples/Basic_Logic.thy Mon Dec 07 10:23:50 2015 +0100 +++ b/src/HOL/Isar_Examples/Basic_Logic.thy Mon Dec 07 10:38:04 2015 +0100 @@ -172,9 +172,9 @@ proof assume "A \ B" then show "B \ A" - proof -- \rule \conjE\ of \A \ B\\ + proof \ \rule \conjE\ of \A \ B\\ assume B A - then show ?thesis .. -- \rule \conjI\ of \B \ A\\ + then show ?thesis .. \ \rule \conjI\ of \B \ A\\ qed qed @@ -202,7 +202,7 @@ from \A \ B\ have B .. from \B\ \A\ have "B \ A" .. } - then show ?thesis .. -- \rule \impI\\ + then show ?thesis .. \ \rule \impI\\ qed text \ @@ -253,7 +253,7 @@ proof assume "P \ P" then show P - proof -- \rule \disjE\: \smash{$\infer{\C\}{\A \ B\ & \infer*{\C\}{[\A\]} & \infer*{\C\}{[\B\]}}$}\ + proof \ \rule \disjE\: \smash{$\infer{\C\}{\A \ B\ & \infer*{\C\}{[\A\]} & \infer*{\C\}{[\B\]}}$}\ assume P show P by fact next assume P show P by fact @@ -322,7 +322,7 @@ proof assume "\x. P (f x)" then show "\y. P y" - proof (rule exE) -- \rule \exE\: \smash{$\infer{\B\}{\\x. A(x)\ & \infer*{\B\}{[\A(x)\]_x}}$}\ + proof (rule exE) \ \rule \exE\: \smash{$\infer{\B\}{\\x. A(x)\ & \infer*{\B\}{[\A(x)\]_x}}$}\ fix a assume "P (f a)" (is "P ?witness") then show ?thesis by (rule exI [of P ?witness])