diff -r dcdfb6355a05 -r 4de9ff3ea29a src/HOL/Probability/Bochner_Integration.thy --- a/src/HOL/Probability/Bochner_Integration.thy Sun Sep 13 22:25:21 2015 +0200 +++ b/src/HOL/Probability/Bochner_Integration.thy Sun Sep 13 22:56:52 2015 +0200 @@ -2549,7 +2549,7 @@ assumes "integrable (M1 \\<^sub>M M2) f" shows "integrable (M2 \\<^sub>M M1) (\(x,y). f (y,x))" proof - - interpret Q: pair_sigma_finite M2 M1 by default + interpret Q: pair_sigma_finite M2 M1 .. have *: "(\(x,y). f (y,x)) = (\x. f (case x of (x,y)\(y,x)))" by (auto simp: fun_eq_iff) show ?thesis unfolding * by (rule integrable_distr[OF measurable_pair_swap']) @@ -2560,7 +2560,7 @@ fixes f :: "_ \ _::{banach, second_countable_topology}" shows "integrable (M2 \\<^sub>M M1) (\(x,y). f (y,x)) \ integrable (M1 \\<^sub>M M2) f" proof - - interpret Q: pair_sigma_finite M2 M1 by default + interpret Q: pair_sigma_finite M2 M1 .. from Q.integrable_product_swap[of "\(x,y). f (y,x)"] integrable_product_swap[of f] show ?thesis by auto qed @@ -2751,7 +2751,7 @@ and integrable_snd: "integrable M2 (\y. \x. f x y \M1)" (is "?INT") and integral_snd: "(\y. (\x. f x y \M1) \M2) = integral\<^sup>L (M1 \\<^sub>M M2) (split f)" (is "?EQ") proof - - interpret Q: pair_sigma_finite M2 M1 by default + interpret Q: pair_sigma_finite M2 M1 .. have Q_int: "integrable (M2 \\<^sub>M M1) (\(x, y). f y x)" using f unfolding integrable_product_swap_iff[symmetric] by simp show ?AE using Q.AE_integrable_fst'[OF Q_int] by simp @@ -2780,11 +2780,11 @@ and f: "integrable (Pi\<^sub>M (I \ J) M) f" shows "integral\<^sup>L (Pi\<^sub>M (I \ J) M) f = (\x. (\y. f (merge I J (x, y)) \Pi\<^sub>M J M) \Pi\<^sub>M I M)" proof - - interpret I: finite_product_sigma_finite M I by default fact - interpret J: finite_product_sigma_finite M J by default fact + interpret I: finite_product_sigma_finite M I by standard fact + interpret J: finite_product_sigma_finite M J by standard fact have "finite (I \ J)" using fin by auto - interpret IJ: finite_product_sigma_finite M "I \ J" by default fact - interpret P: pair_sigma_finite "Pi\<^sub>M I M" "Pi\<^sub>M J M" by default + interpret IJ: finite_product_sigma_finite M "I \ J" by standard fact + interpret P: pair_sigma_finite "Pi\<^sub>M I M" "Pi\<^sub>M J M" .. let ?M = "merge I J" let ?f = "\x. f (?M x)" from f have f_borel: "f \ borel_measurable (Pi\<^sub>M (I \ J) M)" @@ -2830,7 +2830,7 @@ assumes [simp]: "finite I" and integrable: "\i. i \ I \ integrable (M i) (f i)" shows "integrable (Pi\<^sub>M I M) (\x. (\i\I. f i (x i)))" (is "integrable _ ?f") proof (unfold integrable_iff_bounded, intro conjI) - interpret finite_product_sigma_finite M I by default fact + interpret finite_product_sigma_finite M I by standard fact show "?f \ borel_measurable (Pi\<^sub>M I M)" using assms by simp @@ -2859,7 +2859,7 @@ then have prod: "\J. J \ insert i I \ integrable (Pi\<^sub>M J M) (\x. (\i\J. f i (x i)))" by (intro product_integrable_setprod insert(4)) (auto intro: finite_subset) - interpret I: finite_product_sigma_finite M I by default fact + interpret I: finite_product_sigma_finite M I by standard fact have *: "\x y. (\j\I. f j (if j = i then y else x j)) = (\j\I. f j (x j))" using `i \ I` by (auto intro!: setprod.cong) show ?case