diff -r 619531d87ce4 -r 4e2ee88276d2 doc-src/TutorialI/Misc/document/natsum.tex --- a/doc-src/TutorialI/Misc/document/natsum.tex Thu Jul 26 16:08:16 2012 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,232 +0,0 @@ -% -\begin{isabellebody}% -\def\isabellecontext{natsum}% -% -\isadelimtheory -% -\endisadelimtheory -% -\isatagtheory -% -\endisatagtheory -{\isafoldtheory}% -% -\isadelimtheory -% -\endisadelimtheory -% -\begin{isamarkuptext}% -\noindent -In particular, there are \isa{case}-expressions, for example -\begin{isabelle}% -\ \ \ \ \ case\ n\ of\ {\isadigit{0}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isadigit{0}}\ {\isaliteral{7C}{\isacharbar}}\ Suc\ m\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ m% -\end{isabelle} -primitive recursion, for example% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{primrec}\isamarkupfalse% -\ sum\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}nat\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ nat{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline -{\isaliteral{22}{\isachardoublequoteopen}}sum\ {\isadigit{0}}\ {\isaliteral{3D}{\isacharequal}}\ {\isadigit{0}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline -{\isaliteral{22}{\isachardoublequoteopen}}sum\ {\isaliteral{28}{\isacharparenleft}}Suc\ n{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ Suc\ n\ {\isaliteral{2B}{\isacharplus}}\ sum\ n{\isaliteral{22}{\isachardoublequoteclose}}% -\begin{isamarkuptext}% -\noindent -and induction, for example% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{lemma}\isamarkupfalse% -\ {\isaliteral{22}{\isachardoublequoteopen}}sum\ n\ {\isaliteral{2B}{\isacharplus}}\ sum\ n\ {\isaliteral{3D}{\isacharequal}}\ n{\isaliteral{2A}{\isacharasterisk}}{\isaliteral{28}{\isacharparenleft}}Suc\ n{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline -% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ n{\isaliteral{29}{\isacharparenright}}\isanewline -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}auto{\isaliteral{29}{\isacharparenright}}\isanewline -\isacommand{done}\isamarkupfalse% -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\begin{isamarkuptext}% -\newcommand{\mystar}{*% -} -\index{arithmetic operations!for \protect\isa{nat}}% -The arithmetic operations \isadxboldpos{+}{$HOL2arithfun}, -\isadxboldpos{-}{$HOL2arithfun}, \isadxboldpos{\mystar}{$HOL2arithfun}, -\sdx{div}, \sdx{mod}, \cdx{min} and -\cdx{max} are predefined, as are the relations -\isadxboldpos{\isasymle}{$HOL2arithrel} and -\isadxboldpos{<}{$HOL2arithrel}. As usual, \isa{m\ {\isaliteral{2D}{\isacharminus}}\ n\ {\isaliteral{3D}{\isacharequal}}\ {\isadigit{0}}} if -\isa{m\ {\isaliteral{3C}{\isacharless}}\ n}. There is even a least number operation -\sdx{LEAST}\@. For example, \isa{{\isaliteral{28}{\isacharparenleft}}LEAST\ n{\isaliteral{2E}{\isachardot}}\ {\isadigit{0}}\ {\isaliteral{3C}{\isacharless}}\ n{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ Suc\ {\isadigit{0}}}. -\begin{warn}\index{overloading} - The constants \cdx{0} and \cdx{1} and the operations - \isadxboldpos{+}{$HOL2arithfun}, \isadxboldpos{-}{$HOL2arithfun}, - \isadxboldpos{\mystar}{$HOL2arithfun}, \cdx{min}, - \cdx{max}, \isadxboldpos{\isasymle}{$HOL2arithrel} and - \isadxboldpos{<}{$HOL2arithrel} are overloaded: they are available - not just for natural numbers but for other types as well. - For example, given the goal \isa{x\ {\isaliteral{2B}{\isacharplus}}\ {\isadigit{0}}\ {\isaliteral{3D}{\isacharequal}}\ x}, there is nothing to indicate - that you are talking about natural numbers. Hence Isabelle can only infer - that \isa{x} is of some arbitrary type where \isa{{\isadigit{0}}} and \isa{{\isaliteral{2B}{\isacharplus}}} are - declared. As a consequence, you will be unable to prove the - goal. To alert you to such pitfalls, Isabelle flags numerals without a - fixed type in its output: \isa{x\ {\isaliteral{2B}{\isacharplus}}\ {\isaliteral{28}{\isacharparenleft}}{\isadigit{0}}{\isaliteral{5C3C436F6C6F6E3E}{\isasymColon}}{\isaliteral{27}{\isacharprime}}a{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ x}. (In the absence of a numeral, - it may take you some time to realize what has happened if \pgmenu{Show - Types} is not set). In this particular example, you need to include - an explicit type constraint, for example \isa{x{\isaliteral{2B}{\isacharplus}}{\isadigit{0}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}x{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat{\isaliteral{29}{\isacharparenright}}}. If there - is enough contextual information this may not be necessary: \isa{Suc\ x\ {\isaliteral{3D}{\isacharequal}}\ x} automatically implies \isa{x{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat} because \isa{Suc} is not - overloaded. - - For details on overloading see \S\ref{sec:overloading}. - Table~\ref{tab:overloading} in the appendix shows the most important - overloaded operations. -\end{warn} -\begin{warn} - The symbols \isadxboldpos{>}{$HOL2arithrel} and - \isadxboldpos{\isasymge}{$HOL2arithrel} are merely syntax: \isa{x\ {\isaliteral{3E}{\isachargreater}}\ y} - stands for \isa{y\ {\isaliteral{3C}{\isacharless}}\ x} and similary for \isa{{\isaliteral{5C3C67653E}{\isasymge}}} and - \isa{{\isaliteral{5C3C6C653E}{\isasymle}}}. -\end{warn} -\begin{warn} - Constant \isa{{\isadigit{1}}{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat} is defined to equal \isa{Suc\ {\isadigit{0}}}. This definition - (see \S\ref{sec:ConstDefinitions}) is unfolded automatically by some - tactics (like \isa{auto}, \isa{simp} and \isa{arith}) but not by - others (especially the single step tactics in Chapter~\ref{chap:rules}). - If you need the full set of numerals, see~\S\ref{sec:numerals}. - \emph{Novices are advised to stick to \isa{{\isadigit{0}}} and \isa{Suc}.} -\end{warn} - -Both \isa{auto} and \isa{simp} -(a method introduced below, \S\ref{sec:Simplification}) prove -simple arithmetic goals automatically:% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{lemma}\isamarkupfalse% -\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}\ {\isaliteral{5C3C6E6F743E}{\isasymnot}}\ m\ {\isaliteral{3C}{\isacharless}}\ n{\isaliteral{3B}{\isacharsemicolon}}\ m\ {\isaliteral{3C}{\isacharless}}\ n\ {\isaliteral{2B}{\isacharplus}}\ {\isaliteral{28}{\isacharparenleft}}{\isadigit{1}}{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ m\ {\isaliteral{3D}{\isacharequal}}\ n{\isaliteral{22}{\isachardoublequoteclose}}% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\begin{isamarkuptext}% -\noindent -For efficiency's sake, this built-in prover ignores quantified formulae, -many logical connectives, and all arithmetic operations apart from addition. -In consequence, \isa{auto} and \isa{simp} cannot prove this slightly more complex goal:% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{lemma}\isamarkupfalse% -\ {\isaliteral{22}{\isachardoublequoteopen}}m\ {\isaliteral{5C3C6E6F7465713E}{\isasymnoteq}}\ {\isaliteral{28}{\isacharparenleft}}n{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ m\ {\isaliteral{3C}{\isacharless}}\ n\ {\isaliteral{5C3C6F723E}{\isasymor}}\ n\ {\isaliteral{3C}{\isacharless}}\ m{\isaliteral{22}{\isachardoublequoteclose}}% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\begin{isamarkuptext}% -\noindent The method \methdx{arith} is more general. It attempts to -prove the first subgoal provided it is a \textbf{linear arithmetic} formula. -Such formulas may involve the usual logical connectives (\isa{{\isaliteral{5C3C6E6F743E}{\isasymnot}}}, -\isa{{\isaliteral{5C3C616E643E}{\isasymand}}}, \isa{{\isaliteral{5C3C6F723E}{\isasymor}}}, \isa{{\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}}, \isa{{\isaliteral{3D}{\isacharequal}}}, -\isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}}, \isa{{\isaliteral{5C3C6578697374733E}{\isasymexists}}}), the relations \isa{{\isaliteral{3D}{\isacharequal}}}, -\isa{{\isaliteral{5C3C6C653E}{\isasymle}}} and \isa{{\isaliteral{3C}{\isacharless}}}, and the operations \isa{{\isaliteral{2B}{\isacharplus}}}, \isa{{\isaliteral{2D}{\isacharminus}}}, -\isa{min} and \isa{max}. For example,% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{lemma}\isamarkupfalse% -\ {\isaliteral{22}{\isachardoublequoteopen}}min\ i\ {\isaliteral{28}{\isacharparenleft}}max\ j\ {\isaliteral{28}{\isacharparenleft}}k{\isaliteral{2A}{\isacharasterisk}}k{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ max\ {\isaliteral{28}{\isacharparenleft}}min\ {\isaliteral{28}{\isacharparenleft}}k{\isaliteral{2A}{\isacharasterisk}}k{\isaliteral{29}{\isacharparenright}}\ i{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}min\ i\ {\isaliteral{28}{\isacharparenleft}}j{\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}nat{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline -% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -\isacommand{apply}\isamarkupfalse% -{\isaliteral{28}{\isacharparenleft}}arith{\isaliteral{29}{\isacharparenright}}% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\begin{isamarkuptext}% -\noindent -succeeds because \isa{k\ {\isaliteral{2A}{\isacharasterisk}}\ k} can be treated as atomic. In contrast,% -\end{isamarkuptext}% -\isamarkuptrue% -\isacommand{lemma}\isamarkupfalse% -\ {\isaliteral{22}{\isachardoublequoteopen}}n{\isaliteral{2A}{\isacharasterisk}}n\ {\isaliteral{3D}{\isacharequal}}\ n{\isaliteral{2B}{\isacharplus}}{\isadigit{1}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ n{\isaliteral{3D}{\isacharequal}}{\isadigit{0}}{\isaliteral{22}{\isachardoublequoteclose}}% -\isadelimproof -% -\endisadelimproof -% -\isatagproof -% -\endisatagproof -{\isafoldproof}% -% -\isadelimproof -% -\endisadelimproof -% -\begin{isamarkuptext}% -\noindent -is not proved by \isa{arith} because the proof relies -on properties of multiplication. Only multiplication by numerals (which is -the same as iterated addition) is taken into account. - -\begin{warn} The running time of \isa{arith} is exponential in the number - of occurrences of \ttindexboldpos{-}{$HOL2arithfun}, \cdx{min} and - \cdx{max} because they are first eliminated by case distinctions. - -If \isa{k} is a numeral, \sdx{div}~\isa{k}, \sdx{mod}~\isa{k} and -\isa{k}~\sdx{dvd} are also supported, where the former two are eliminated -by case distinctions, again blowing up the running time. - -If the formula involves quantifiers, \isa{arith} may take -super-exponential time and space. -\end{warn}% -\end{isamarkuptext}% -\isamarkuptrue% -% -\isadelimtheory -% -\endisadelimtheory -% -\isatagtheory -% -\endisatagtheory -{\isafoldtheory}% -% -\isadelimtheory -% -\endisadelimtheory -\end{isabellebody}% -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "root" -%%% End: