diff -r bdcc11b2fdc8 -r 510ac30f44c0 src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Fri Aug 12 07:18:28 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Fri Aug 12 09:17:24 2011 -0700 @@ -762,7 +762,7 @@ apply auto apply (rule span_mul) apply (rule span_superset) -apply (auto simp add: Collect_def mem_def) +apply auto done lemma finite_stdbasis: "finite {cart_basis i ::real^'n |i. i\ (UNIV:: 'n set)}" (is "finite ?S") @@ -785,12 +785,12 @@ proof- let ?U = "UNIV :: 'n set" let ?B = "cart_basis ` S" - let ?P = "\(x::real^_). \i\ ?U. i \ S \ x$i =0" + let ?P = "{(x::real^_). \i\ ?U. i \ S \ x$i =0}" {fix x::"real^_" assume xS: "x\ ?B" - from xS have "?P x" by auto} + from xS have "x \ ?P" by auto} moreover have "subspace ?P" - by (auto simp add: subspace_def Collect_def mem_def) + by (auto simp add: subspace_def) ultimately show ?thesis using x span_induct[of ?B ?P x] iS by blast qed @@ -830,7 +830,7 @@ from equalityD2[OF span_stdbasis] have IU: " (UNIV :: (real^'m) set) \ span ?I" by blast from linear_eq[OF lf lg IU] fg x - have "f x = g x" unfolding Collect_def Ball_def mem_def by metis} + have "f x = g x" unfolding Ball_def mem_Collect_eq by metis} then show ?thesis by (auto intro: ext) qed