diff -r 0f33c7031ec9 -r 5131c388a9b0 src/HOL/Analysis/Set_Integral.thy --- a/src/HOL/Analysis/Set_Integral.thy Tue Apr 06 18:12:20 2021 +0000 +++ b/src/HOL/Analysis/Set_Integral.thy Wed Apr 07 12:28:19 2021 +0000 @@ -59,7 +59,7 @@ shows "set_integrable M A f = set_integrable M' A' f'" proof - have "(\x. indicator A x *\<^sub>R f x) = (\x. indicator A' x *\<^sub>R f' x)" - using assms by (auto simp: indicator_def) + using assms by (auto simp: indicator_def of_bool_def) thus ?thesis by (simp add: set_integrable_def assms) qed @@ -652,13 +652,11 @@ assumes "A \ sets M" "B \ sets M" "(A - B) \ (B - A) \ null_sets M" shows "(\\<^sup>+x \ A. f x \M) = (\\<^sup>+x \ B. f x \M)" -proof (rule nn_integral_cong_AE, auto simp add: indicator_def) +proof (rule nn_integral_cong_AE) have *: "AE a in M. a \ (A - B) \ (B - A)" using assms(3) AE_not_in by blast - then show "AE a in M. a \ A \ a \ B \ f a = 0" + then show \AE x in M. f x * indicator A x = f x * indicator B x\ by auto - show "AE x\A in M. x \ B \ f x = 0" - using * by auto qed proposition nn_integral_disjoint_family: