diff -r d488d643e677 -r 5193570b739a src/HOL/Divides.thy --- a/src/HOL/Divides.thy Tue Sep 15 08:57:47 2020 +0200 +++ b/src/HOL/Divides.thy Thu Sep 17 09:57:30 2020 +0000 @@ -1251,6 +1251,87 @@ code_module Divides \ (SML) Arith and (OCaml) Arith and (Haskell) Arith +subsection \More on bit operations\ + +lemma take_bit_incr_eq: + \take_bit n (k + 1) = 1 + take_bit n k\ if \take_bit n k \ 2 ^ n - 1\ + for k :: int +proof - + from that have \2 ^ n \ k mod 2 ^ n + 1\ + by (simp add: take_bit_eq_mod) + moreover have \k mod 2 ^ n < 2 ^ n\ + by simp + ultimately have *: \k mod 2 ^ n + 1 < 2 ^ n\ + by linarith + have \(k + 1) mod 2 ^ n = (k mod 2 ^ n + 1) mod 2 ^ n\ + by (simp add: mod_simps) + also have \\ = k mod 2 ^ n + 1\ + using * by (simp add: zmod_trival_iff) + finally have \(k + 1) mod 2 ^ n = k mod 2 ^ n + 1\ . + then show ?thesis + by (simp add: take_bit_eq_mod) +qed + +lemma take_bit_decr_eq: + \take_bit n (k - 1) = take_bit n k - 1\ if \take_bit n k \ 0\ + for k :: int +proof - + from that have \k mod 2 ^ n \ 0\ + by (simp add: take_bit_eq_mod) + moreover have \k mod 2 ^ n \ 0\ \k mod 2 ^ n < 2 ^ n\ + by simp_all + ultimately have *: \k mod 2 ^ n > 0\ + by linarith + have \(k - 1) mod 2 ^ n = (k mod 2 ^ n - 1) mod 2 ^ n\ + by (simp add: mod_simps) + also have \\ = k mod 2 ^ n - 1\ + by (simp add: zmod_trival_iff) + (use \k mod 2 ^ n < 2 ^ n\ * in linarith) + finally have \(k - 1) mod 2 ^ n = k mod 2 ^ n - 1\ . + then show ?thesis + by (simp add: take_bit_eq_mod) +qed + +lemma take_bit_int_less_eq_self_iff: + \take_bit n k \ k \ 0 \ k\ (is \?P \ ?Q\) + for k :: int +proof + assume ?P + show ?Q + proof (rule ccontr) + assume \\ 0 \ k\ + then have \k < 0\ + by simp + with \?P\ + have \take_bit n k < 0\ + by (rule le_less_trans) + then show False + by simp + qed +next + assume ?Q + then show ?P + by (simp add: take_bit_eq_mod zmod_le_nonneg_dividend) +qed + +lemma take_bit_int_less_self_iff: + \take_bit n k < k \ 2 ^ n \ k\ + for k :: int + by (auto simp add: less_le take_bit_int_less_eq_self_iff take_bit_int_eq_self_iff + intro: order_trans [of 0 \2 ^ n\ k]) + +lemma take_bit_int_greater_self_iff: + \k < take_bit n k \ k < 0\ + for k :: int + using take_bit_int_less_eq_self_iff [of n k] by auto + +lemma take_bit_int_greater_eq_self_iff: + \k \ take_bit n k \ k < 2 ^ n\ + for k :: int + by (auto simp add: le_less take_bit_int_greater_self_iff take_bit_int_eq_self_iff + dest: sym not_sym intro: less_trans [of k 0 \2 ^ n\]) + + subsection \Lemmas of doubtful value\ lemma div_geq: "m div n = Suc ((m - n) div n)" if "0 < n" and " \ m < n" for m n :: nat