diff -r 42a54d6cec15 -r 51c5f3f11d16 src/HOL/MicroJava/BV/Err.thy --- a/src/HOL/MicroJava/BV/Err.thy Sat Mar 02 12:09:23 2002 +0100 +++ b/src/HOL/MicroJava/BV/Err.thy Sun Mar 03 16:59:08 2002 +0100 @@ -12,48 +12,48 @@ datatype 'a err = Err | OK 'a -types 'a ebinop = "'a => 'a => 'a err" +types 'a ebinop = "'a \ 'a \ 'a err" 'a esl = "'a set * 'a ord * 'a ebinop" consts - ok_val :: "'a err => 'a" + ok_val :: "'a err \ 'a" primrec "ok_val (OK x) = x" constdefs - lift :: "('a => 'b err) => ('a err => 'b err)" -"lift f e == case e of Err => Err | OK x => f x" + lift :: "('a \ 'b err) \ ('a err \ 'b err)" +"lift f e == case e of Err \ Err | OK x \ f x" - lift2 :: "('a => 'b => 'c err) => 'a err => 'b err => 'c err" + lift2 :: "('a \ 'b \ 'c err) \ 'a err \ 'b err \ 'c err" "lift2 f e1 e2 == - case e1 of Err => Err - | OK x => (case e2 of Err => Err | OK y => f x y)" + case e1 of Err \ Err + | OK x \ (case e2 of Err \ Err | OK y \ f x y)" - le :: "'a ord => 'a err ord" + le :: "'a ord \ 'a err ord" "le r e1 e2 == - case e2 of Err => True | - OK y => (case e1 of Err => False | OK x => x <=_r y)" + case e2 of Err \ True | + OK y \ (case e1 of Err \ False | OK x \ x <=_r y)" - sup :: "('a => 'b => 'c) => ('a err => 'b err => 'c err)" + sup :: "('a \ 'b \ 'c) \ ('a err \ 'b err \ 'c err)" "sup f == lift2(%x y. OK(x +_f y))" - err :: "'a set => 'a err set" + err :: "'a set \ 'a err set" "err A == insert Err {x . ? y:A. x = OK y}" - esl :: "'a sl => 'a esl" + esl :: "'a sl \ 'a esl" "esl == %(A,r,f). (A,r, %x y. OK(f x y))" - sl :: "'a esl => 'a err sl" + sl :: "'a esl \ 'a err sl" "sl == %(A,r,f). (err A, le r, lift2 f)" syntax - err_semilat :: "'a esl => bool" + err_semilat :: "'a esl \ bool" translations "err_semilat L" == "semilat(Err.sl L)" consts - strict :: "('a => 'b err) => ('a err => 'b err)" + strict :: "('a \ 'b err) \ ('a err \ 'b err)" primrec "strict f Err = Err" "strict f (OK x) = f x" @@ -75,20 +75,20 @@ by (simp add: lesub_def) lemma le_err_refl: - "!x. x <=_r x ==> e <=_(Err.le r) e" + "!x. x <=_r x \ e <=_(Err.le r) e" apply (unfold lesub_def Err.le_def) apply (simp split: err.split) done lemma le_err_trans [rule_format]: - "order r ==> e1 <=_(le r) e2 --> e2 <=_(le r) e3 --> e1 <=_(le r) e3" + "order r \ e1 <=_(le r) e2 \ e2 <=_(le r) e3 \ e1 <=_(le r) e3" apply (unfold unfold_lesub_err le_def) apply (simp split: err.split) apply (blast intro: order_trans) done lemma le_err_antisym [rule_format]: - "order r ==> e1 <=_(le r) e2 --> e2 <=_(le r) e1 --> e1=e2" + "order r \ e1 <=_(le r) e2 \ e2 <=_(le r) e1 \ e1=e2" apply (unfold unfold_lesub_err le_def) apply (simp split: err.split) apply (blast intro: order_antisym) @@ -136,20 +136,20 @@ by (simp add: lesssub_def lesub_def le_def split: err.split) lemma semilat_errI: - "semilat(A,r,f) ==> semilat(err A, Err.le r, lift2(%x y. OK(f x y)))" + "semilat(A,r,f) \ semilat(err A, Err.le r, lift2(%x y. OK(f x y)))" apply (unfold semilat_Def closed_def plussub_def lesub_def lift2_def Err.le_def err_def) apply (simp split: err.split) done lemma err_semilat_eslI: - "!!L. semilat L ==> err_semilat(esl L)" + "\L. semilat L \ err_semilat(esl L)" apply (unfold sl_def esl_def) apply (simp (no_asm_simp) only: split_tupled_all) apply (simp add: semilat_errI) done -lemma acc_err [simp, intro!]: "acc r ==> acc(le r)" +lemma acc_err [simp, intro!]: "acc r \ acc(le r)" apply (unfold acc_def lesub_def le_def lesssub_def) apply (simp add: wf_eq_minimal split: err.split) apply clarify @@ -170,7 +170,7 @@ section {* lift *} lemma lift_in_errI: - "[| e : err S; !x:S. e = OK x --> f x : err S |] ==> lift f e : err S" + "\ e : err S; !x:S. e = OK x \ f x : err S \ \ lift f e : err S" apply (unfold lift_def) apply (simp split: err.split) apply blast @@ -221,42 +221,42 @@ section {* semilat (err A) (le r) f *} lemma semilat_le_err_Err_plus [simp]: - "[| x: err A; semilat(err A, le r, f) |] ==> Err +_f x = Err" + "\ x: err A; semilat(err A, le r, f) \ \ Err +_f x = Err" by (blast intro: le_iff_plus_unchanged [THEN iffD1] le_iff_plus_unchanged2 [THEN iffD1]) lemma semilat_le_err_plus_Err [simp]: - "[| x: err A; semilat(err A, le r, f) |] ==> x +_f Err = Err" + "\ x: err A; semilat(err A, le r, f) \ \ x +_f Err = Err" by (blast intro: le_iff_plus_unchanged [THEN iffD1] le_iff_plus_unchanged2 [THEN iffD1]) lemma semilat_le_err_OK1: - "[| x:A; y:A; semilat(err A, le r, f); OK x +_f OK y = OK z |] - ==> x <=_r z"; + "\ x:A; y:A; semilat(err A, le r, f); OK x +_f OK y = OK z \ + \ x <=_r z"; apply (rule OK_le_err_OK [THEN iffD1]) apply (erule subst) apply simp done lemma semilat_le_err_OK2: - "[| x:A; y:A; semilat(err A, le r, f); OK x +_f OK y = OK z |] - ==> y <=_r z" + "\ x:A; y:A; semilat(err A, le r, f); OK x +_f OK y = OK z \ + \ y <=_r z" apply (rule OK_le_err_OK [THEN iffD1]) apply (erule subst) apply simp done lemma eq_order_le: - "[| x=y; order r |] ==> x <=_r y" + "\ x=y; order r \ \ x <=_r y" apply (unfold order_def) apply blast done lemma OK_plus_OK_eq_Err_conv [simp]: - "[| x:A; y:A; semilat(err A, le r, fe) |] ==> + "\ x:A; y:A; semilat(err A, le r, fe) \ \ ((OK x) +_fe (OK y) = Err) = (~(? z:A. x <=_r z & y <=_r z))" proof - - have plus_le_conv3: "!!A x y z f r. - [| semilat (A,r,f); x +_f y <=_r z; x:A; y:A; z:A |] - ==> x <=_r z \ y <=_r z" + have plus_le_conv3: "\A x y z f r. + \ semilat (A,r,f); x +_f y <=_r z; x:A; y:A; z:A \ + \ x <=_r z \ y <=_r z" by (rule plus_le_conv [THEN iffD1]) case rule_context thus ?thesis @@ -287,13 +287,13 @@ (* FIXME? *) lemma all_bex_swap_lemma [iff]: - "(!x. (? y:A. x = f y) --> P x) = (!y:A. P(f y))" + "(!x. (? y:A. x = f y) \ P x) = (!y:A. P(f y))" by blast lemma closed_err_Union_lift2I: - "[| !A:AS. closed (err A) (lift2 f); AS ~= {}; - !A:AS.!B:AS. A~=B --> (!a:A.!b:B. a +_f b = Err) |] - ==> closed (err(Union AS)) (lift2 f)" + "\ !A:AS. closed (err A) (lift2 f); AS ~= {}; + !A:AS.!B:AS. A~=B \ (!a:A.!b:B. a +_f b = Err) \ + \ closed (err(Union AS)) (lift2 f)" apply (unfold closed_def err_def) apply simp apply clarify @@ -307,9 +307,9 @@ which may not hold *} lemma err_semilat_UnionI: - "[| !A:AS. err_semilat(A, r, f); AS ~= {}; - !A:AS.!B:AS. A~=B --> (!a:A.!b:B. ~ a <=_r b & a +_f b = Err) |] - ==> err_semilat(Union AS, r, f)" + "\ !A:AS. err_semilat(A, r, f); AS ~= {}; + !A:AS.!B:AS. A~=B \ (!a:A.!b:B. ~ a <=_r b & a +_f b = Err) \ + \ err_semilat(Union AS, r, f)" apply (unfold semilat_def sl_def) apply (simp add: closed_err_Union_lift2I) apply (rule conjI)