diff -r 260fa2c67e3e -r 520dd8696927 doc-src/TutorialI/Rules/Primes.thy --- a/doc-src/TutorialI/Rules/Primes.thy Fri Jan 05 14:28:10 2001 +0100 +++ b/doc-src/TutorialI/Rules/Primes.thy Fri Jan 05 15:16:40 2001 +0100 @@ -77,7 +77,7 @@ (*Maximality: for all m,n,k naturals, if k divides m and k divides n then k divides gcd(m,n)*) lemma gcd_greatest [rule_format]: - "(k dvd m) \ (k dvd n) \ k dvd gcd(m,n)" + "k dvd m \ k dvd n \ k dvd gcd(m,n)" apply (induct_tac m n rule: gcd.induct) apply (case_tac "n=0") apply (simp_all add: dvd_mod); @@ -266,7 +266,7 @@ done lemma relprime_dvd_mult: - "\ gcd(k,n)=1; k dvd (m*n) \ \ k dvd m"; + "\ gcd(k,n)=1; k dvd m*n \ \ k dvd m"; apply (insert gcd_mult_distrib2 [of m k n]) apply (simp) apply (erule_tac t="m" in ssubst); @@ -287,7 +287,7 @@ apply (simp) done -lemma relprime_dvd_mult_iff: "gcd(k,n)=1 \ k dvd (m*n) = k dvd m"; +lemma relprime_dvd_mult_iff: "gcd(k,n)=1 \ (k dvd m*n) = (k dvd m)"; apply (blast intro: relprime_dvd_mult dvd_trans) done