diff -r 87201c60ae7d -r 521cc9bf2958 src/HOL/Old_Number_Theory/Fib.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Old_Number_Theory/Fib.thy Tue Sep 01 15:39:33 2009 +0200 @@ -0,0 +1,150 @@ +(* ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1997 University of Cambridge +*) + +header {* The Fibonacci function *} + +theory Fib +imports Primes +begin + +text {* + Fibonacci numbers: proofs of laws taken from: + R. L. Graham, D. E. Knuth, O. Patashnik. Concrete Mathematics. + (Addison-Wesley, 1989) + + \bigskip +*} + +fun fib :: "nat \ nat" +where + "fib 0 = 0" +| "fib (Suc 0) = 1" +| fib_2: "fib (Suc (Suc n)) = fib n + fib (Suc n)" + +text {* + \medskip The difficulty in these proofs is to ensure that the + induction hypotheses are applied before the definition of @{term + fib}. Towards this end, the @{term fib} equations are not declared + to the Simplifier and are applied very selectively at first. +*} + +text{*We disable @{text fib.fib_2fib_2} for simplification ...*} +declare fib_2 [simp del] + +text{*...then prove a version that has a more restrictive pattern.*} +lemma fib_Suc3: "fib (Suc (Suc (Suc n))) = fib (Suc n) + fib (Suc (Suc n))" + by (rule fib_2) + +text {* \medskip Concrete Mathematics, page 280 *} + +lemma fib_add: "fib (Suc (n + k)) = fib (Suc k) * fib (Suc n) + fib k * fib n" +proof (induct n rule: fib.induct) + case 1 show ?case by simp +next + case 2 show ?case by (simp add: fib_2) +next + case 3 thus ?case by (simp add: fib_2 add_mult_distrib2) +qed + +lemma fib_Suc_neq_0: "fib (Suc n) \ 0" + apply (induct n rule: fib.induct) + apply (simp_all add: fib_2) + done + +lemma fib_Suc_gr_0: "0 < fib (Suc n)" + by (insert fib_Suc_neq_0 [of n], simp) + +lemma fib_gr_0: "0 < n ==> 0 < fib n" + by (case_tac n, auto simp add: fib_Suc_gr_0) + + +text {* + \medskip Concrete Mathematics, page 278: Cassini's identity. The proof is + much easier using integers, not natural numbers! +*} + +lemma fib_Cassini_int: + "int (fib (Suc (Suc n)) * fib n) = + (if n mod 2 = 0 then int (fib (Suc n) * fib (Suc n)) - 1 + else int (fib (Suc n) * fib (Suc n)) + 1)" +proof(induct n rule: fib.induct) + case 1 thus ?case by (simp add: fib_2) +next + case 2 thus ?case by (simp add: fib_2 mod_Suc) +next + case (3 x) + have "Suc 0 \ x mod 2 \ x mod 2 = 0" by presburger + with "3.hyps" show ?case by (simp add: fib.simps add_mult_distrib add_mult_distrib2) +qed + +text{*We now obtain a version for the natural numbers via the coercion + function @{term int}.*} +theorem fib_Cassini: + "fib (Suc (Suc n)) * fib n = + (if n mod 2 = 0 then fib (Suc n) * fib (Suc n) - 1 + else fib (Suc n) * fib (Suc n) + 1)" + apply (rule int_int_eq [THEN iffD1]) + apply (simp add: fib_Cassini_int) + apply (subst zdiff_int [symmetric]) + apply (insert fib_Suc_gr_0 [of n], simp_all) + done + + +text {* \medskip Toward Law 6.111 of Concrete Mathematics *} + +lemma gcd_fib_Suc_eq_1: "gcd (fib n) (fib (Suc n)) = Suc 0" + apply (induct n rule: fib.induct) + prefer 3 + apply (simp add: gcd_commute fib_Suc3) + apply (simp_all add: fib_2) + done + +lemma gcd_fib_add: "gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)" + apply (simp add: gcd_commute [of "fib m"]) + apply (case_tac m) + apply simp + apply (simp add: fib_add) + apply (simp add: add_commute gcd_non_0 [OF fib_Suc_gr_0]) + apply (simp add: gcd_non_0 [OF fib_Suc_gr_0, symmetric]) + apply (simp add: gcd_fib_Suc_eq_1 gcd_mult_cancel) + done + +lemma gcd_fib_diff: "m \ n ==> gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)" + by (simp add: gcd_fib_add [symmetric, of _ "n-m"]) + +lemma gcd_fib_mod: "0 < m ==> gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" +proof (induct n rule: less_induct) + case (less n) + from less.prems have pos_m: "0 < m" . + show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" + proof (cases "m < n") + case True note m_n = True + then have m_n': "m \ n" by auto + with pos_m have pos_n: "0 < n" by auto + with pos_m m_n have diff: "n - m < n" by auto + have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))" + by (simp add: mod_if [of n]) (insert m_n, auto) + also have "\ = gcd (fib m) (fib (n - m))" by (simp add: less.hyps diff pos_m) + also have "\ = gcd (fib m) (fib n)" by (simp add: gcd_fib_diff m_n') + finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" . + next + case False then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" + by (cases "m = n") auto + qed +qed + +lemma fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)" -- {* Law 6.111 *} + apply (induct m n rule: gcd_induct) + apply (simp_all add: gcd_non_0 gcd_commute gcd_fib_mod) + done + +theorem fib_mult_eq_setsum: + "fib (Suc n) * fib n = (\k \ {..n}. fib k * fib k)" + apply (induct n rule: fib.induct) + apply (auto simp add: atMost_Suc fib_2) + apply (simp add: add_mult_distrib add_mult_distrib2) + done + +end