diff -r 87201c60ae7d -r 521cc9bf2958 src/HOL/ex/Sqrt_Script.thy --- a/src/HOL/ex/Sqrt_Script.thy Tue Sep 01 14:13:34 2009 +0200 +++ b/src/HOL/ex/Sqrt_Script.thy Tue Sep 01 15:39:33 2009 +0200 @@ -6,7 +6,7 @@ header {* Square roots of primes are irrational (script version) *} theory Sqrt_Script -imports Complex_Main Primes +imports Complex_Main "~~/src/HOL/Number_Theory/Primes" begin text {* @@ -16,30 +16,30 @@ subsection {* Preliminaries *} -lemma prime_nonzero: "prime p \ p \ 0" - by (force simp add: prime_def) +lemma prime_nonzero: "prime (p::nat) \ p \ 0" + by (force simp add: prime_nat_def) lemma prime_dvd_other_side: - "n * n = p * (k * k) \ prime p \ p dvd n" - apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult) + "(n::nat) * n = p * (k * k) \ prime p \ p dvd n" + apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult_nat) apply auto done -lemma reduction: "prime p \ +lemma reduction: "prime (p::nat) \ 0 < k \ k * k = p * (j * j) \ k < p * j \ 0 < j" apply (rule ccontr) apply (simp add: linorder_not_less) apply (erule disjE) apply (frule mult_le_mono, assumption) apply auto - apply (force simp add: prime_def) + apply (force simp add: prime_nat_def) done lemma rearrange: "(j::nat) * (p * j) = k * k \ k * k = p * (j * j)" by (simp add: mult_ac) lemma prime_not_square: - "prime p \ (\k. 0 < k \ m * m \ p * (k * k))" + "prime (p::nat) \ (\k. 0 < k \ m * m \ p * (k * k))" apply (induct m rule: nat_less_induct) apply clarify apply (frule prime_dvd_other_side, assumption) @@ -57,7 +57,7 @@ *} theorem prime_sqrt_irrational: - "prime p \ x * x = real p \ 0 \ x \ x \ \" + "prime (p::nat) \ x * x = real p \ 0 \ x \ x \ \" apply (rule notI) apply (erule Rats_abs_nat_div_natE) apply (simp del: real_of_nat_mult @@ -65,6 +65,6 @@ done lemmas two_sqrt_irrational = - prime_sqrt_irrational [OF two_is_prime] + prime_sqrt_irrational [OF two_is_prime_nat] end