diff -r ea8343187225 -r 52a0a526e677 src/HOL/Tools/Function/function_elims.ML --- a/src/HOL/Tools/Function/function_elims.ML Mon Sep 16 16:50:49 2013 +0200 +++ b/src/HOL/Tools/Function/function_elims.ML Mon Sep 16 17:04:28 2013 +0200 @@ -1,7 +1,7 @@ (* Title: HOL/Tools/Function/function_elims.ML Author: Manuel Eberl, TU Muenchen -Generates the pelims rules for a function. These are of the shape +Generate the pelims rules for a function. These are of the shape [|f x y z = w; !!\. [|x = \; y = \; z = \; w = \|] ==> P; \|] ==> P and are derived from the cases rule. There is at least one pelim rule for each function (cf. mutually recursive functions) @@ -14,8 +14,8 @@ signature FUNCTION_ELIMS = sig val dest_funprop : term -> (term * term list) * term - val mk_partial_elim_rules : - local_theory -> Function_Common.function_result -> thm list list + val mk_partial_elim_rules : local_theory -> + Function_Common.function_result -> thm list list end; structure Function_Elims : FUNCTION_ELIMS = @@ -32,119 +32,122 @@ | dest_funprop trm = (strip_comb trm, @{term "True"}); local - fun propagate_tac i thm = - let fun inspect eq = case eq of - Const ("HOL.Trueprop",_) $ (Const ("HOL.eq",_) $ Free x $ t) => - if Logic.occs (Free x, t) then raise Match else true - | Const ("HOL.Trueprop",_) $ (Const ("HOL.eq",_) $ t $ Free x) => - if Logic.occs (Free x, t) then raise Match else false - | _ => raise Match; - fun mk_eq thm = (if inspect (prop_of thm) then - [thm RS eq_reflection] - else - [Thm.symmetric (thm RS eq_reflection)]) - handle Match => []; - val ss = Simplifier.global_context (Thm.theory_of_thm thm) empty_ss - |> Simplifier.set_mksimps (K mk_eq) - in - asm_lr_simp_tac ss i thm - end; + +fun propagate_tac i thm = + let fun inspect eq = case eq of + Const ("HOL.Trueprop",_) $ (Const ("HOL.eq",_) $ Free x $ t) => + if Logic.occs (Free x, t) then raise Match else true + | Const ("HOL.Trueprop",_) $ (Const ("HOL.eq",_) $ t $ Free x) => + if Logic.occs (Free x, t) then raise Match else false + | _ => raise Match; + fun mk_eq thm = (if inspect (prop_of thm) then + [thm RS eq_reflection] + else + [Thm.symmetric (thm RS eq_reflection)]) + handle Match => []; + val ss = Simplifier.global_context (Thm.theory_of_thm thm) empty_ss + |> Simplifier.set_mksimps (K mk_eq) + in + asm_lr_simp_tac ss i thm + end; - val eqBoolI = @{lemma "!!P. P ==> P = True" "!!P. ~P ==> P = False" by iprover+} - val boolE = @{thms HOL.TrueE HOL.FalseE} - val boolD = @{lemma "!!P. True = P ==> P" "!!P. False = P ==> ~P" by iprover+} - val eqBool = @{thms HOL.eq_True HOL.eq_False HOL.not_False_eq_True HOL.not_True_eq_False} +val eqBoolI = @{lemma "!!P. P ==> P = True" "!!P. ~P ==> P = False" by iprover+} +val boolE = @{thms HOL.TrueE HOL.FalseE} +val boolD = @{lemma "!!P. True = P ==> P" "!!P. False = P ==> ~P" by iprover+} +val eqBool = @{thms HOL.eq_True HOL.eq_False HOL.not_False_eq_True HOL.not_True_eq_False} - fun bool_subst_tac ctxt i = - REPEAT (EqSubst.eqsubst_asm_tac ctxt [1] eqBool i) - THEN REPEAT (dresolve_tac boolD i) - THEN REPEAT (eresolve_tac boolE i) +fun bool_subst_tac ctxt i = + REPEAT (EqSubst.eqsubst_asm_tac ctxt [1] eqBool i) + THEN REPEAT (dresolve_tac boolD i) + THEN REPEAT (eresolve_tac boolE i) - fun mk_bool_elims ctxt elim = - let val tac = ALLGOALS (bool_subst_tac ctxt) - fun mk_bool_elim b = - elim - |> Thm.forall_elim b - |> Tactic.rule_by_tactic ctxt (TRY (resolve_tac eqBoolI 1)) - |> Tactic.rule_by_tactic ctxt tac - in - map mk_bool_elim [@{cterm True}, @{cterm False}] - end; +fun mk_bool_elims ctxt elim = + let val tac = ALLGOALS (bool_subst_tac ctxt) + fun mk_bool_elim b = + elim + |> Thm.forall_elim b + |> Tactic.rule_by_tactic ctxt (TRY (resolve_tac eqBoolI 1)) + |> Tactic.rule_by_tactic ctxt tac + in + map mk_bool_elim [@{cterm True}, @{cterm False}] + end; in - fun mk_partial_elim_rules ctxt result= - let val FunctionResult {fs, G, R, dom, psimps, simple_pinducts, cases, - termination, domintros, ...} = result; - val n_fs = length fs; +fun mk_partial_elim_rules ctxt result= + let val FunctionResult {fs, G, R, dom, psimps, simple_pinducts, cases, + termination, domintros, ...} = result; + val n_fs = length fs; - fun mk_partial_elim_rule (idx,f) = - let fun mk_funeq 0 T (acc_vars, acc_lhs) = - let val y = Free("y",T) in - (y :: acc_vars, (HOLogic.mk_Trueprop (HOLogic.mk_eq (acc_lhs, y))), T) - end - | mk_funeq n (Type("fun",[S,T])) (acc_vars, acc_lhs) = - let val xn = Free ("x" ^ Int.toString n,S) in - mk_funeq (n - 1) T (xn :: acc_vars, acc_lhs $ xn) - end - | mk_funeq _ _ _ = raise (TERM ("Not a function.", [f])) + fun mk_partial_elim_rule (idx,f) = + let fun mk_funeq 0 T (acc_vars, acc_lhs) = + let val y = Free("y",T) in + (y :: acc_vars, (HOLogic.mk_Trueprop (HOLogic.mk_eq (acc_lhs, y))), T) + end + | mk_funeq n (Type("fun",[S,T])) (acc_vars, acc_lhs) = + let val xn = Free ("x" ^ Int.toString n,S) in + mk_funeq (n - 1) T (xn :: acc_vars, acc_lhs $ xn) + end + | mk_funeq _ _ _ = raise (TERM ("Not a function.", [f])) - val f_simps = filter (fn r => (prop_of r |> Logic.strip_assums_concl - |> HOLogic.dest_Trueprop - |> dest_funprop |> fst |> fst) = f) - psimps + val f_simps = filter (fn r => (prop_of r |> Logic.strip_assums_concl + |> HOLogic.dest_Trueprop + |> dest_funprop |> fst |> fst) = f) + psimps - val arity = hd f_simps |> prop_of |> Logic.strip_assums_concl - |> HOLogic.dest_Trueprop - |> snd o fst o dest_funprop |> length; - val (free_vars,prop,ranT) = mk_funeq arity (fastype_of f) ([],f) - val (rhs_var, arg_vars) = case free_vars of x::xs => (x, rev xs) - val args = HOLogic.mk_tuple arg_vars; - val domT = R |> dest_Free |> snd |> hd o snd o dest_Type + val arity = hd f_simps |> prop_of |> Logic.strip_assums_concl + |> HOLogic.dest_Trueprop + |> snd o fst o dest_funprop |> length; + val (free_vars,prop,ranT) = mk_funeq arity (fastype_of f) ([],f) + val (rhs_var, arg_vars) = case free_vars of x::xs => (x, rev xs) + val args = HOLogic.mk_tuple arg_vars; + val domT = R |> dest_Free |> snd |> hd o snd o dest_Type - val sumtree_inj = SumTree.mk_inj domT n_fs (idx+1) args; + val sumtree_inj = SumTree.mk_inj domT n_fs (idx+1) args; - val thy = Proof_Context.theory_of ctxt; - val cprop = cterm_of thy prop + val thy = Proof_Context.theory_of ctxt; + val cprop = cterm_of thy prop - val asms = [cprop, cterm_of thy (HOLogic.mk_Trueprop (dom $ sumtree_inj))]; - val asms_thms = map Thm.assume asms; + val asms = [cprop, cterm_of thy (HOLogic.mk_Trueprop (dom $ sumtree_inj))]; + val asms_thms = map Thm.assume asms; - fun prep_subgoal i = - REPEAT (eresolve_tac @{thms Pair_inject} i) - THEN Method.insert_tac (case asms_thms of - thm::thms => (thm RS sym) :: thms) i - THEN propagate_tac i - THEN TRY - ((EqSubst.eqsubst_asm_tac ctxt [1] psimps i) THEN atac i) - THEN bool_subst_tac ctxt i; + fun prep_subgoal i = + REPEAT (eresolve_tac @{thms Pair_inject} i) + THEN Method.insert_tac (case asms_thms of + thm::thms => (thm RS sym) :: thms) i + THEN propagate_tac i + THEN TRY + ((EqSubst.eqsubst_asm_tac ctxt [1] psimps i) THEN atac i) + THEN bool_subst_tac ctxt i; - val tac = ALLGOALS prep_subgoal; + val tac = ALLGOALS prep_subgoal; - val elim_stripped = - nth cases idx - |> Thm.forall_elim @{cterm "P::bool"} - |> Thm.forall_elim (cterm_of thy args) - |> Tactic.rule_by_tactic ctxt tac - |> fold_rev Thm.implies_intr asms - |> Thm.forall_intr (cterm_of thy rhs_var) + val elim_stripped = + nth cases idx + |> Thm.forall_elim @{cterm "P::bool"} + |> Thm.forall_elim (cterm_of thy args) + |> Tactic.rule_by_tactic ctxt tac + |> fold_rev Thm.implies_intr asms + |> Thm.forall_intr (cterm_of thy rhs_var) - val bool_elims = (case ranT of - Type ("HOL.bool", []) => mk_bool_elims ctxt elim_stripped - | _ => []); + val bool_elims = (case ranT of + Type ("HOL.bool", []) => mk_bool_elims ctxt elim_stripped + | _ => []); - fun unstrip rl = - rl |> (fn thm => List.foldr (uncurry Thm.forall_intr) thm - (map (cterm_of thy) arg_vars)) - |> Thm.forall_intr @{cterm "P::bool"} + fun unstrip rl = + rl |> (fn thm => List.foldr (uncurry Thm.forall_intr) thm + (map (cterm_of thy) arg_vars)) + |> Thm.forall_intr @{cterm "P::bool"} - in - map unstrip (elim_stripped :: bool_elims) - end; + in + map unstrip (elim_stripped :: bool_elims) + end; - in - map_index mk_partial_elim_rule fs - end; + in + map_index mk_partial_elim_rule fs end; + end; +end; +