diff -r 40e4755e57f7 -r 52a419210d5c src/ZF/Constructible/Separation.thy --- a/src/ZF/Constructible/Separation.thy Wed Sep 11 16:53:59 2002 +0200 +++ b/src/ZF/Constructible/Separation.thy Wed Sep 11 16:55:37 2002 +0200 @@ -51,6 +51,24 @@ apply (simp add: Lset_succ Collect_conj_in_DPow_Lset) done +text{*Encapsulates the standard proof script for proving instances of +Separation. Typically @{term u} is a finite enumeration.*} +lemma gen_separation: + assumes reflection: "REFLECTS [P,Q]" + and Lu: "L(u)" + and collI: "!!j. u \ Lset(j) + \ Collect(Lset(j), Q(j)) \ DPow(Lset(j))" + shows "separation(L,P)" +apply (rule separation_CollectI) +apply (rule_tac A="{u,z}" in subset_LsetE, blast intro: Lu) +apply (rule ReflectsE [OF reflection], assumption) +apply (drule subset_Lset_ltD, assumption) +apply (erule reflection_imp_L_separation) + apply (simp_all add: lt_Ord2, clarify) +apply (rule collI) +apply assumption; +done + subsection{*Separation for Intersection*} @@ -61,12 +79,7 @@ lemma Inter_separation: "L(A) ==> separation(L, \x. \y[L]. y\A --> x\y)" -apply (rule separation_CollectI) -apply (rule_tac A="{A,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF Inter_Reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2, clarify) +apply (rule gen_separation [OF Inter_Reflects], simp) apply (rule DPow_LsetI) apply (rule ball_iff_sats) apply (rule imp_iff_sats) @@ -83,13 +96,8 @@ lemma Diff_separation: "L(B) ==> separation(L, \x. x \ B)" -apply (rule separation_CollectI) -apply (rule_tac A="{B,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF Diff_Reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2, clarify) -apply (rule DPow_LsetI) +apply (rule gen_separation [OF Diff_Reflects], simp) +apply (rule DPow_LsetI) apply (rule not_iff_sats) apply (rule_tac env="[x,B]" in mem_iff_sats) apply (rule sep_rules | simp)+ @@ -106,17 +114,12 @@ lemma cartprod_separation: "[| L(A); L(B) |] ==> separation(L, \z. \x[L]. x\A & (\y[L]. y\B & pair(L,x,y,z)))" -apply (rule separation_CollectI) -apply (rule_tac A="{A,B,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF cartprod_Reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2, clarify) +apply (rule gen_separation [OF cartprod_Reflects, of "{A,B}"], simp) +apply (drule mem_Lset_imp_subset_Lset, clarsimp) apply (rule DPow_LsetI) -apply (rename_tac u) apply (rule bex_iff_sats) apply (rule conj_iff_sats) -apply (rule_tac i=0 and j=2 and env="[x,u,A,B]" in mem_iff_sats, simp_all) +apply (rule_tac i=0 and j=2 and env="[x,z,A,B]" in mem_iff_sats, simp_all) apply (rule sep_rules | simp)+ done @@ -130,12 +133,8 @@ lemma image_separation: "[| L(A); L(r) |] ==> separation(L, \y. \p[L]. p\r & (\x[L]. x\A & pair(L,x,y,p)))" -apply (rule separation_CollectI) -apply (rule_tac A="{A,r,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF image_Reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2, clarify) +apply (rule gen_separation [OF image_Reflects, of "{A,r}"], simp) +apply (drule mem_Lset_imp_subset_Lset, clarsimp) apply (rule DPow_LsetI) apply (rule bex_iff_sats) apply (rule conj_iff_sats) @@ -155,17 +154,11 @@ lemma converse_separation: "L(r) ==> separation(L, \z. \p[L]. p\r & (\x[L]. \y[L]. pair(L,x,y,p) & pair(L,y,x,z)))" -apply (rule separation_CollectI) -apply (rule_tac A="{r,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF converse_Reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2, clarify) +apply (rule gen_separation [OF converse_Reflects], simp) apply (rule DPow_LsetI) -apply (rename_tac u) apply (rule bex_iff_sats) apply (rule conj_iff_sats) -apply (rule_tac i=0 and j=2 and env="[p,u,r]" in mem_iff_sats, simp_all) +apply (rule_tac i=0 and j=2 and env="[p,z,r]" in mem_iff_sats, simp_all) apply (rule sep_rules | simp)+ done @@ -179,17 +172,11 @@ lemma restrict_separation: "L(A) ==> separation(L, \z. \x[L]. x\A & (\y[L]. pair(L,x,y,z)))" -apply (rule separation_CollectI) -apply (rule_tac A="{A,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF restrict_Reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2, clarify) +apply (rule gen_separation [OF restrict_Reflects], simp) apply (rule DPow_LsetI) -apply (rename_tac u) apply (rule bex_iff_sats) apply (rule conj_iff_sats) -apply (rule_tac i=0 and j=2 and env="[x,u,A]" in mem_iff_sats, simp_all) +apply (rule_tac i=0 and j=2 and env="[x,z,A]" in mem_iff_sats, simp_all) apply (rule sep_rules | simp)+ done @@ -210,18 +197,12 @@ ==> separation(L, \xz. \x[L]. \y[L]. \z[L]. \xy[L]. \yz[L]. pair(L,x,z,xz) & pair(L,x,y,xy) & pair(L,y,z,yz) & xy\s & yz\r)" -apply (rule separation_CollectI) -apply (rule_tac A="{r,s,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF comp_Reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2, clarify) +apply (rule gen_separation [OF comp_Reflects, of "{r,s}"], simp) +apply (drule mem_Lset_imp_subset_Lset, clarsimp) apply (rule DPow_LsetI) -apply (rename_tac u) apply (rule bex_iff_sats)+ -apply (rename_tac x y z) apply (rule conj_iff_sats) -apply (rule_tac env="[z,y,x,u,r,s]" in pair_iff_sats) +apply (rule_tac env="[z,y,x,xz,r,s]" in pair_iff_sats) apply (rule sep_rules | simp)+ done @@ -234,17 +215,12 @@ lemma pred_separation: "[| L(r); L(x) |] ==> separation(L, \y. \p[L]. p\r & pair(L,y,x,p))" -apply (rule separation_CollectI) -apply (rule_tac A="{r,x,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF pred_Reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2, clarify) +apply (rule gen_separation [OF pred_Reflects, of "{r,x}"], simp) +apply (drule mem_Lset_imp_subset_Lset, clarsimp) apply (rule DPow_LsetI) -apply (rename_tac u) apply (rule bex_iff_sats) apply (rule conj_iff_sats) -apply (rule_tac env = "[p,u,r,x]" in mem_iff_sats) +apply (rule_tac env = "[p,y,r,x]" in mem_iff_sats) apply (rule sep_rules | simp)+ done @@ -258,16 +234,10 @@ lemma Memrel_separation: "separation(L, \z. \x[L]. \y[L]. pair(L,x,y,z) & x \ y)" -apply (rule separation_CollectI) -apply (rule_tac A="{z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF Memrel_Reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2) +apply (rule gen_separation [OF Memrel_Reflects nonempty]) apply (rule DPow_LsetI) -apply (rename_tac u) apply (rule bex_iff_sats conj_iff_sats)+ -apply (rule_tac env = "[y,x,u]" in pair_iff_sats) +apply (rule_tac env = "[y,x,z]" in pair_iff_sats) apply (rule sep_rules | simp)+ done @@ -290,18 +260,12 @@ pair(L,f,b,p) & pair(L,n,b,nb) & is_cons(L,nb,f,cnbf) & upair(L,cnbf,cnbf,z))" apply (rule strong_replacementI) -apply (rule rallI) -apply (rule separation_CollectI) -apply (rule_tac A="{n,A,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF funspace_succ_Reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2) +apply (rule_tac u="{n,A}" in gen_separation [OF funspace_succ_Reflects], simp) +apply (drule mem_Lset_imp_subset_Lset, clarsimp) apply (rule DPow_LsetI) -apply (rename_tac u) apply (rule bex_iff_sats) apply (rule conj_iff_sats) -apply (rule_tac env = "[p,u,n,A]" in mem_iff_sats) +apply (rule_tac env = "[p,z,n,A]" in mem_iff_sats) apply (rule sep_rules | simp)+ done @@ -319,16 +283,11 @@ "[| L(A); L(f); L(r) |] ==> separation (L, \x. x\A --> (\y[L]. (\p[L]. fun_apply(L,f,x,y) & pair(L,y,x,p) & p \ r)))" -apply (rule separation_CollectI) -apply (rule_tac A="{A,f,r,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF well_ord_iso_Reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2) +apply (rule gen_separation [OF well_ord_iso_Reflects, of "{A,f,r}"], simp) +apply (drule mem_Lset_imp_subset_Lset, clarsimp) apply (rule DPow_LsetI) -apply (rename_tac u) apply (rule imp_iff_sats) -apply (rule_tac env = "[u,A,f,r]" in mem_iff_sats) +apply (rule_tac env = "[x,A,f,r]" in mem_iff_sats) apply (rule sep_rules | simp)+ done @@ -350,17 +309,11 @@ ==> separation(L, \a. \x[L]. \g[L]. \mx[L]. \par[L]. ordinal(L,x) & membership(L,x,mx) & pred_set(L,A,a,r,par) & order_isomorphism(L,par,r,x,mx,g))" -apply (rule separation_CollectI) -apply (rule_tac A="{A,r,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF obase_reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2) +apply (rule gen_separation [OF obase_reflects, of "{A,r}"], simp) +apply (drule mem_Lset_imp_subset_Lset, clarsimp) apply (rule DPow_LsetI) -apply (rename_tac u) -apply (rule bex_iff_sats) -apply (rule conj_iff_sats) -apply (rule_tac env = "[x,u,A,r]" in ordinal_iff_sats) +apply (rule bex_iff_sats conj_iff_sats)+ +apply (rule_tac env = "[x,a,A,r]" in ordinal_iff_sats) apply (rule sep_rules | simp)+ done @@ -378,23 +331,17 @@ order_isomorphism(**Lset(i),pxr,r,y,my,g)))]" by (intro FOL_reflections function_reflections fun_plus_reflections) - lemma obase_equals_separation: "[| L(A); L(r) |] ==> separation (L, \x. x\A --> ~(\y[L]. \g[L]. ordinal(L,y) & (\my[L]. \pxr[L]. membership(L,y,my) & pred_set(L,A,x,r,pxr) & order_isomorphism(L,pxr,r,y,my,g))))" -apply (rule separation_CollectI) -apply (rule_tac A="{A,r,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF obase_equals_reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2) +apply (rule gen_separation [OF obase_equals_reflects, of "{A,r}"], simp) +apply (drule mem_Lset_imp_subset_Lset, clarsimp) apply (rule DPow_LsetI) -apply (rename_tac u) apply (rule imp_iff_sats ball_iff_sats disj_iff_sats not_iff_sats)+ -apply (rule_tac env = "[u,A,r]" in mem_iff_sats) +apply (rule_tac env = "[x,A,r]" in mem_iff_sats) apply (rule sep_rules | simp)+ done @@ -419,18 +366,12 @@ ordinal(L,x) & pair(L,a,x,z) & membership(L,x,mx) & pred_set(L,A,a,r,par) & order_isomorphism(L,par,r,x,mx,g))" apply (rule strong_replacementI) -apply (rule rallI) apply (rename_tac B) -apply (rule separation_CollectI) -apply (rule_tac A="{A,B,r,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF omap_reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2) +apply (rule_tac u="{A,r,B}" in gen_separation [OF omap_reflects], simp) +apply (drule mem_Lset_imp_subset_Lset, clarsimp) apply (rule DPow_LsetI) -apply (rename_tac u) apply (rule bex_iff_sats conj_iff_sats)+ -apply (rule_tac env = "[a,u,A,B,r]" in mem_iff_sats) +apply (rule_tac env = "[a,z,A,B,r]" in mem_iff_sats) apply (rule sep_rules | simp)+ done @@ -456,16 +397,11 @@ pair(L,x,a,xa) & xa \ r & pair(L,x,b,xb) & xb \ r & (\fx[L]. \gx[L]. fun_apply(L,f,x,fx) & fun_apply(L,g,x,gx) & fx \ gx))" -apply (rule separation_CollectI) -apply (rule_tac A="{r,f,g,a,b,z}" in subset_LsetE, blast) -apply (rule ReflectsE [OF is_recfun_reflects], assumption) -apply (drule subset_Lset_ltD, assumption) -apply (erule reflection_imp_L_separation) - apply (simp_all add: lt_Ord2) +apply (rule gen_separation [OF is_recfun_reflects, of "{r,f,g,a,b}"], simp) +apply (drule mem_Lset_imp_subset_Lset, clarsimp) apply (rule DPow_LsetI) -apply (rename_tac u) apply (rule bex_iff_sats conj_iff_sats)+ -apply (rule_tac env = "[xa,u,r,f,g,a,b]" in pair_iff_sats) +apply (rule_tac env = "[xa,x,r,f,g,a,b]" in pair_iff_sats) apply (rule sep_rules | simp)+ done