diff -r 7bf882b0a51e -r 5369d671f100 src/HOL/Real/HahnBanach/FunctionNorm.thy --- a/src/HOL/Real/HahnBanach/FunctionNorm.thy Tue Sep 30 15:10:26 2003 +0200 +++ b/src/HOL/Real/HahnBanach/FunctionNorm.thy Tue Sep 30 15:10:59 2003 +0200 @@ -151,7 +151,7 @@ shows "b \ \f\\V" proof - have "lub (B V f) (\f\\V)" - by (unfold B_def fn_norm_def) (rule fn_norm_works) + by (unfold B_def fn_norm_def) (rule fn_norm_works [OF _ continuous.intro]) from this and b show ?thesis .. qed @@ -161,7 +161,7 @@ shows "\f\\V \ y" proof - have "lub (B V f) (\f\\V)" - by (unfold B_def fn_norm_def) (rule fn_norm_works) + by (unfold B_def fn_norm_def) (rule fn_norm_works [OF _ continuous.intro]) from this and b show ?thesis .. qed @@ -175,7 +175,7 @@ So it is @{text "\ 0"} if all elements in @{text B} are @{text "\ 0"}, provided the supremum exists and @{text B} is not empty. *} have "lub (B V f) (\f\\V)" - by (unfold B_def fn_norm_def) (rule fn_norm_works) + by (unfold B_def fn_norm_def) (rule fn_norm_works [OF _ continuous.intro]) moreover have "0 \ B V f" .. ultimately show ?thesis .. qed @@ -198,7 +198,9 @@ also have "\\\ = 0" by simp also have "\ \ \f\\V * \x\" proof (rule real_le_mult_order1a) - show "0 \ \f\\V" by (unfold B_def fn_norm_def) rule + show "0 \ \f\\V" + by (unfold B_def fn_norm_def) + (rule fn_norm_ge_zero [OF _ continuous.intro]) show "0 \ norm x" .. qed finally show "\f x\ \ \f\\V * \x\" . @@ -212,7 +214,7 @@ from x and neq have "\f x\ * inverse \x\ \ B V f" by (auto simp add: B_def real_divide_def) then show "\f x\ * inverse \x\ \ \f\\V" - by (unfold B_def fn_norm_def) (rule fn_norm_ub) + by (unfold B_def fn_norm_def) (rule fn_norm_ub [OF _ continuous.intro]) qed finally show ?thesis . qed @@ -254,6 +256,6 @@ qed finally show ?thesis . qed -qed +qed (simp_all! add: continuous_def) end