diff -r f51d4a302962 -r 5386df44a037 src/Doc/Tutorial/Protocol/Public.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Doc/Tutorial/Protocol/Public.thy Tue Aug 28 18:57:32 2012 +0200 @@ -0,0 +1,172 @@ +(* Title: HOL/Auth/Public + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1996 University of Cambridge + +Theory of Public Keys (common to all public-key protocols) + +Private and public keys; initial states of agents +*)(*<*) +theory Public imports Event +begin +(*>*) + +text {* +The function +@{text pubK} maps agents to their public keys. The function +@{text priK} maps agents to their private keys. It is merely +an abbreviation (cf.\ \S\ref{sec:abbreviations}) defined in terms of +@{text invKey} and @{text pubK}. +*} + +consts pubK :: "agent \ key" +abbreviation priK :: "agent \ key" +where "priK x \ invKey(pubK x)" +(*<*) +overloading initState \ initState +begin + +primrec initState where + (*Agents know their private key and all public keys*) + initState_Server: "initState Server = + insert (Key (priK Server)) (Key ` range pubK)" +| initState_Friend: "initState (Friend i) = + insert (Key (priK (Friend i))) (Key ` range pubK)" +| initState_Spy: "initState Spy = + (Key`invKey`pubK`bad) Un (Key ` range pubK)" + +end +(*>*) + +text {* +\noindent +The set @{text bad} consists of those agents whose private keys are known to +the spy. + +Two axioms are asserted about the public-key cryptosystem. +No two agents have the same public key, and no private key equals +any public key. +*} + +axioms + inj_pubK: "inj pubK" + priK_neq_pubK: "priK A \ pubK B" +(*<*) +lemmas [iff] = inj_pubK [THEN inj_eq] + +lemma priK_inj_eq[iff]: "(priK A = priK B) = (A=B)" + apply safe + apply (drule_tac f=invKey in arg_cong) + apply simp + done + +lemmas [iff] = priK_neq_pubK priK_neq_pubK [THEN not_sym] + +lemma not_symKeys_pubK[iff]: "pubK A \ symKeys" + by (simp add: symKeys_def) + +lemma not_symKeys_priK[iff]: "priK A \ symKeys" + by (simp add: symKeys_def) + +lemma symKeys_neq_imp_neq: "(K \ symKeys) \ (K' \ symKeys) \ K \ K'" + by blast + +lemma analz_symKeys_Decrypt: "[| Crypt K X \ analz H; K \ symKeys; Key K \ analz H |] + ==> X \ analz H" + by (auto simp add: symKeys_def) + + +(** "Image" equations that hold for injective functions **) + +lemma invKey_image_eq[simp]: "(invKey x : invKey`A) = (x:A)" + by auto + +(*holds because invKey is injective*) +lemma pubK_image_eq[simp]: "(pubK x : pubK`A) = (x:A)" + by auto + +lemma priK_pubK_image_eq[simp]: "(priK x ~: pubK`A)" + by auto + + +(** Rewrites should not refer to initState(Friend i) + -- not in normal form! **) + +lemma keysFor_parts_initState[simp]: "keysFor (parts (initState C)) = {}" + apply (unfold keysFor_def) + apply (induct C) + apply (auto intro: range_eqI) + done + + +(*** Function "spies" ***) + +(*Agents see their own private keys!*) +lemma priK_in_initState[iff]: "Key (priK A) : initState A" + by (induct A) auto + +(*All public keys are visible*) +lemma spies_pubK[iff]: "Key (pubK A) : spies evs" + by (induct evs) (simp_all add: imageI knows_Cons split: event.split) + +(*Spy sees private keys of bad agents!*) +lemma Spy_spies_bad[intro!]: "A: bad ==> Key (priK A) : spies evs" + by (induct evs) (simp_all add: imageI knows_Cons split: event.split) + +lemmas [iff] = spies_pubK [THEN analz.Inj] + + +(*** Fresh nonces ***) + +lemma Nonce_notin_initState[iff]: "Nonce N ~: parts (initState B)" + by (induct B) auto + +lemma Nonce_notin_used_empty[simp]: "Nonce N ~: used []" + by (simp add: used_Nil) + + +(*** Supply fresh nonces for possibility theorems. ***) + +(*In any trace, there is an upper bound N on the greatest nonce in use.*) +lemma Nonce_supply_lemma: "EX N. ALL n. N<=n --> Nonce n \ used evs" +apply (induct_tac "evs") +apply (rule_tac x = 0 in exI) +apply (simp_all (no_asm_simp) add: used_Cons split add: event.split) +apply safe +apply (rule msg_Nonce_supply [THEN exE], blast elim!: add_leE)+ +done + +lemma Nonce_supply1: "EX N. Nonce N \ used evs" +by (rule Nonce_supply_lemma [THEN exE], blast) + +lemma Nonce_supply: "Nonce (@ N. Nonce N \ used evs) \ used evs" +apply (rule Nonce_supply_lemma [THEN exE]) +apply (rule someI, fast) +done + + +(*** Specialized rewriting for the analz_image_... theorems ***) + +lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} Un H" + by blast + +lemma insert_Key_image: "insert (Key K) (Key`KK Un C) = Key ` (insert K KK) Un C" + by blast + + +(*Specialized methods*) + +(*Tactic for possibility theorems*) +ML {* +fun possibility_tac ctxt = + REPEAT (*omit used_Says so that Nonces start from different traces!*) + (ALLGOALS (simp_tac (simpset_of ctxt delsimps [used_Says])) + THEN + REPEAT_FIRST (eq_assume_tac ORELSE' + resolve_tac [refl, conjI, @{thm Nonce_supply}])); +*} + +method_setup possibility = {* Scan.succeed (SIMPLE_METHOD o possibility_tac) *} + "for proving possibility theorems" + +end +(*>*) \ No newline at end of file