diff -r f51d4a302962 -r 5386df44a037 src/Doc/Tutorial/Sets/Functions.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Doc/Tutorial/Sets/Functions.thy Tue Aug 28 18:57:32 2012 +0200 @@ -0,0 +1,143 @@ +theory Functions imports Main begin + + +text{* +@{thm[display] id_def[no_vars]} +\rulename{id_def} + +@{thm[display] o_def[no_vars]} +\rulename{o_def} + +@{thm[display] o_assoc[no_vars]} +\rulename{o_assoc} +*} + +text{* +@{thm[display] fun_upd_apply[no_vars]} +\rulename{fun_upd_apply} + +@{thm[display] fun_upd_upd[no_vars]} +\rulename{fun_upd_upd} +*} + + +text{* +definitions of injective, surjective, bijective + +@{thm[display] inj_on_def[no_vars]} +\rulename{inj_on_def} + +@{thm[display] surj_def[no_vars]} +\rulename{surj_def} + +@{thm[display] bij_def[no_vars]} +\rulename{bij_def} +*} + + + +text{* +possibly interesting theorems about inv +*} + +text{* +@{thm[display] inv_f_f[no_vars]} +\rulename{inv_f_f} + +@{thm[display] inj_imp_surj_inv[no_vars]} +\rulename{inj_imp_surj_inv} + +@{thm[display] surj_imp_inj_inv[no_vars]} +\rulename{surj_imp_inj_inv} + +@{thm[display] surj_f_inv_f[no_vars]} +\rulename{surj_f_inv_f} + +@{thm[display] bij_imp_bij_inv[no_vars]} +\rulename{bij_imp_bij_inv} + +@{thm[display] inv_inv_eq[no_vars]} +\rulename{inv_inv_eq} + +@{thm[display] o_inv_distrib[no_vars]} +\rulename{o_inv_distrib} +*} + +text{* +small sample proof + +@{thm[display] ext[no_vars]} +\rulename{ext} + +@{thm[display] fun_eq_iff[no_vars]} +\rulename{fun_eq_iff} +*} + +lemma "inj f \ (f o g = f o h) = (g = h)"; + apply (simp add: fun_eq_iff inj_on_def) + apply (auto) + done + +text{* +\begin{isabelle} +inj\ f\ \isasymLongrightarrow \ (f\ \isasymcirc \ g\ =\ f\ \isasymcirc \ h)\ =\ (g\ =\ h)\isanewline +\ 1.\ \isasymforall x\ y.\ f\ x\ =\ f\ y\ \isasymlongrightarrow \ x\ =\ y\ \isasymLongrightarrow \isanewline +\ \ \ \ (\isasymforall x.\ f\ (g\ x)\ =\ f\ (h\ x))\ =\ (\isasymforall x.\ g\ x\ =\ h\ x) +\end{isabelle} +*} + + +text{*image, inverse image*} + +text{* +@{thm[display] image_def[no_vars]} +\rulename{image_def} +*} + +text{* +@{thm[display] image_Un[no_vars]} +\rulename{image_Un} +*} + +text{* +@{thm[display] image_compose[no_vars]} +\rulename{image_compose} + +@{thm[display] image_Int[no_vars]} +\rulename{image_Int} + +@{thm[display] bij_image_Compl_eq[no_vars]} +\rulename{bij_image_Compl_eq} +*} + + +text{* +illustrates Union as well as image +*} + +lemma "f`A \ g`A = (\x\A. {f x, g x})" +by blast + +lemma "f ` {(x,y). P x y} = {f(x,y) | x y. P x y}" +by blast + +text{*actually a macro!*} + +lemma "range f = f`UNIV" +by blast + + +text{* +inverse image +*} + +text{* +@{thm[display] vimage_def[no_vars]} +\rulename{vimage_def} + +@{thm[display] vimage_Compl[no_vars]} +\rulename{vimage_Compl} +*} + + +end