diff -r f9243336f54e -r 54018ed3b99d src/HOL/Complex/CLim.thy --- a/src/HOL/Complex/CLim.thy Wed Dec 13 20:38:24 2006 +0100 +++ b/src/HOL/Complex/CLim.thy Wed Dec 13 21:25:56 2006 +0100 @@ -88,12 +88,6 @@ lemma starfun_norm: "( *f* (\x. norm (f x))) = (\x. hnorm (( *f* f) x))" by transfer (rule refl) -lemma starfun_Re: "( *f* (\x. Re (f x))) = (\x. hRe (( *f* f) x))" -by transfer (rule refl) - -lemma starfun_Im: "( *f* (\x. Im (f x))) = (\x. hIm (( *f* f) x))" -by transfer (rule refl) - lemma star_of_Re [simp]: "star_of (Re x) = hRe (star_of x)" by transfer (rule refl) @@ -122,7 +116,7 @@ apply (auto intro: NSLIM_Re NSLIM_Im) apply (auto simp add: NSLIM_def starfun_Re starfun_Im) apply (auto dest!: spec) -apply (simp add: starfunC_approx_Re_Im_iff starfun_Re starfun_Im) +apply (simp add: hcomplex_approx_iff) done lemma LIM_CRLIM_Re_Im_iff: