diff -r 722593f2f068 -r 5402c2eaf393 doc-src/TutorialI/Sets/sets.tex --- a/doc-src/TutorialI/Sets/sets.tex Mon Feb 10 09:45:22 2003 +0100 +++ b/doc-src/TutorialI/Sets/sets.tex Mon Feb 10 15:57:46 2003 +0100 @@ -377,12 +377,12 @@ \isa{\isacharbraceleft x.\ P\ x\isacharbraceright}. The same thing can happen with quantifiers: \hbox{\isa{All\ P}}\index{*All (constant)} is -\isa{{\isasymforall}z.\ P\ x} and -\hbox{\isa{Ex\ P}}\index{*Ex (constant)} is \isa{\isasymexists z.\ P\ x}; +\isa{{\isasymforall}x.\ P\ x} and +\hbox{\isa{Ex\ P}}\index{*Ex (constant)} is \isa{\isasymexists x.\ P\ x}; also \isa{Ball\ A\ P}\index{*Ball (constant)} is -\isa{{\isasymforall}z\isasymin A.\ P\ x} and +\isa{{\isasymforall}x\isasymin A.\ P\ x} and \isa{Bex\ A\ P}\index{*Bex (constant)} is -\isa{\isasymexists z\isasymin A.\ P\ x}. For indexed unions and +\isa{\isasymexists x\isasymin A.\ P\ x}. For indexed unions and intersections, you may see the constants \cdx{UNION} and \cdx{INTER}\@. The internal constant for $\varepsilon x.P(x)$ is~\cdx{Eps}.