diff -r c8d92d4ced73 -r 547335b41005 src/HOL/Library/Countable_Set.thy --- a/src/HOL/Library/Countable_Set.thy Tue Jul 01 20:51:26 2025 +0200 +++ b/src/HOL/Library/Countable_Set.thy Thu Jul 03 13:53:14 2025 +0200 @@ -47,7 +47,7 @@ by (blast intro: countableI_bij1 countableI_bij2) lemma countable_subset: "A \ B \ countable B \ countable A" - by (auto simp: countable_def intro: subset_inj_on) + by (auto simp: countable_def intro: inj_on_subset) lemma countableI_type[intro, simp]: "countable (A:: 'a :: countable set)" using countableI[of to_nat A] by auto @@ -211,7 +211,7 @@ moreover have "inj_on (inv_into A f) (f`A)" "inv_into A f ` f ` A \ A" by (auto intro: inj_on_inv_into inv_into_into) ultimately show ?thesis - by (blast dest: comp_inj_on subset_inj_on intro: countableI) + by (blast dest: comp_inj_on inj_on_subset intro: countableI) qed lemma countable_image_inj_on: "countable (f ` A) \ inj_on f A \ countable A"