diff -r cb0021d56e11 -r 55676111ed69 src/HOL/Library/GCD.thy --- a/src/HOL/Library/GCD.thy Mon Jul 21 15:26:26 2008 +0200 +++ b/src/HOL/Library/GCD.thy Mon Jul 21 15:27:23 2008 +0200 @@ -163,11 +163,8 @@ text {* \medskip Addition laws *} -lemma gcd_add1 [simp,algebra]: "gcd (m + n) n = gcd m n" - apply (case_tac "n = 0") - apply (simp_all add: gcd_non_0) - apply (simp add: mod_add_self2) - done +lemma gcd_add1 [simp, algebra]: "gcd (m + n) n = gcd m n" + by (cases "n = 0") (auto simp add: gcd_non_0) lemma gcd_add2 [simp, algebra]: "gcd m (m + n) = gcd m n" proof -