diff -r 07f7b158ef32 -r 5693a977a767 src/HOL/Complex/Complex.thy --- a/src/HOL/Complex/Complex.thy Thu Jul 29 16:14:06 2004 +0200 +++ b/src/HOL/Complex/Complex.thy Thu Jul 29 16:14:42 2004 +0200 @@ -7,7 +7,7 @@ header {* Complex Numbers: Rectangular and Polar Representations *} -theory Complex = HLog: +theory Complex = "../Hyperreal/HLog": datatype complex = Complex real real @@ -440,7 +440,8 @@ lemma complex_mod_eq_zero_cancel [simp]: "(cmod x = 0) = (x = 0)" apply (induct x) -apply (auto intro: real_sum_squares_cancel real_sum_squares_cancel2 +apply (auto iff: real_0_le_add_iff + intro: real_sum_squares_cancel real_sum_squares_cancel2 simp add: complex_mod complex_zero_def power2_eq_square) done @@ -453,7 +454,7 @@ lemma complex_mod_mult_cnj: "cmod(z * cnj(z)) = cmod(z) ^ 2" apply (induct z, simp add: complex_mod complex_cnj complex_mult) -apply (simp add: power2_eq_square abs_if linorder_not_less) +apply (simp add: power2_eq_square abs_if linorder_not_less real_0_le_add_iff) done lemma complex_mod_squared: "cmod(Complex x y) ^ 2 = x ^ 2 + y ^ 2" @@ -510,7 +511,7 @@ lemma complex_mod_triangle_ineq [simp]: "cmod (x + y) \ cmod(x) + cmod(y)" apply (rule_tac n = 1 in realpow_increasing) apply (auto intro: order_trans [OF _ complex_mod_ge_zero] - simp add: power2_eq_square [symmetric]) + simp add: add_increasing power2_eq_square [symmetric]) done lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \ cmod a"