diff -r a25b6f79043f -r 575b3a818de5 src/HOL/Analysis/Continuous_Extension.thy --- a/src/HOL/Analysis/Continuous_Extension.thy Thu Nov 28 20:38:07 2019 +0100 +++ b/src/HOL/Analysis/Continuous_Extension.thy Thu Nov 28 23:06:22 2019 +0100 @@ -91,7 +91,7 @@ done qed moreover have "\U \ \; x \ S\ \ 0 \ F U x" for U x - using nonneg [of x] by (simp add: F_def field_split_simps setdist_pos_le) + using nonneg [of x] by (simp add: F_def field_split_simps) ultimately show "\U. U \ \ \ continuous_on S (F U) \ (\x\S. 0 \ F U x)" by metis next @@ -194,7 +194,7 @@ show ?thesis proof (cases "T = U") case True with \S = {}\ \a \ b\ show ?thesis - by (rule_tac f = "\x. b" in that) (auto simp: continuous_on_const) + by (rule_tac f = "\x. b" in that) (auto) next case False with UT closedin_subset obtain c where c: "c \ U" "c \ T" @@ -220,7 +220,7 @@ case True show ?thesis proof (cases "S = U") case True with \T = {}\ \a \ b\ show ?thesis - by (rule_tac f = "\x. a" in that) (auto simp: continuous_on_const) + by (rule_tac f = "\x. a" in that) (auto) next case False with US closedin_subset obtain c where c: "c \ U" "c \ S" @@ -260,7 +260,7 @@ "\x. x \ T \ f x = b" proof (cases "a = b") case True then show ?thesis - by (rule_tac f = "\x. b" in that) (auto simp: continuous_on_const) + by (rule_tac f = "\x. b" in that) (auto) next case False then show ?thesis