diff -r a25b6f79043f -r 575b3a818de5 src/HOL/Analysis/Retracts.thy --- a/src/HOL/Analysis/Retracts.thy Thu Nov 28 20:38:07 2019 +0100 +++ b/src/HOL/Analysis/Retracts.thy Thu Nov 28 23:06:22 2019 +0100 @@ -604,7 +604,7 @@ show "continuous_on W (\x. if x \ W - V then a else h (j x, g x))" apply (subst Weq) apply (rule continuous_on_cases_local) - apply (simp_all add: Weq [symmetric] WWV continuous_on_const *) + apply (simp_all add: Weq [symmetric] WWV *) using WV' closedin_diff apply fastforce apply (auto simp: j0 j1) done @@ -1408,7 +1408,7 @@ proof (intro exI conjI) show "continuous_on (S \ T) (\x. if x \ S then x else r x)" apply (rule continuous_on_cases_local [OF clS clT]) - using r by (auto simp: continuous_on_id) + using r by (auto) qed (use r in auto) also have "\ retract_of U" by (rule Un) @@ -2136,7 +2136,7 @@ proof have "continuous_on (T \ (S - T)) ?g" apply (rule continuous_on_cases_local) - using Seq clo ope by (auto simp: contf continuous_on_const intro: continuous_on_cases_local) + using Seq clo ope by (auto simp: contf intro: continuous_on_cases_local) with Seq show "continuous_on S ?g" by metis show "?g ` S \ U"