diff -r 620db300c038 -r 57753e0ec1d4 doc-src/TutorialI/Sets/sets.tex --- a/doc-src/TutorialI/Sets/sets.tex Sat Mar 21 12:37:13 2009 +0100 +++ b/doc-src/TutorialI/Sets/sets.tex Sun Mar 22 19:36:04 2009 +0100 @@ -299,7 +299,7 @@ \isa{UN x:A.\ B} in \textsc{ascii}. Indexed union satisfies this basic law: \begin{isabelle} (b\ \isasymin\ -(\isasymUnion x\isasymin A. B\ x) =\ (\isasymexists x\isasymin A.\ +(\isasymUnion x\isasymin A. B\ x)) =\ (\isasymexists x\isasymin A.\ b\ \isasymin\ B\ x) \rulenamedx{UN_iff} \end{isabelle} @@ -414,12 +414,12 @@ $k$-element subsets of~$A$ is \index{binomial coefficients} $\binom{n}{k}$. -\begin{warn} -The term \isa{finite\ A} is defined via a syntax translation as an -abbreviation for \isa{A {\isasymin} Finites}, where the constant -\cdx{Finites} denotes the set of all finite sets of a given type. There -is no constant \isa{finite}. -\end{warn} +%\begin{warn} +%The term \isa{finite\ A} is defined via a syntax translation as an +%abbreviation for \isa{A {\isasymin} Finites}, where the constant +%\cdx{Finites} denotes the set of all finite sets of a given type. There +%is no constant \isa{finite}. +%\end{warn} \index{sets|)}