diff -r 95f1e700b712 -r 57bf0cecb366 src/ZF/UNITY/State.thy --- a/src/ZF/UNITY/State.thy Tue Mar 06 16:46:27 2012 +0000 +++ b/src/ZF/UNITY/State.thy Tue Mar 06 17:01:37 2012 +0000 @@ -51,19 +51,19 @@ (* Union *) -lemma st_set_Un_iff [iff]: "st_set(A Un B) <-> st_set(A) & st_set(B)" +lemma st_set_Un_iff [iff]: "st_set(A \ B) \ st_set(A) & st_set(B)" by (simp add: st_set_def, auto) -lemma st_set_Union_iff [iff]: "st_set(Union(S)) <-> (\A \ S. st_set(A))" +lemma st_set_Union_iff [iff]: "st_set(\(S)) \ (\A \ S. st_set(A))" by (simp add: st_set_def, auto) (* Intersection *) -lemma st_set_Int [intro!]: "st_set(A) | st_set(B) ==> st_set(A Int B)" +lemma st_set_Int [intro!]: "st_set(A) | st_set(B) ==> st_set(A \ B)" by (simp add: st_set_def, auto) lemma st_set_Inter [intro!]: - "(S=0) | (\A \ S. st_set(A)) ==> st_set(Inter(S))" + "(S=0) | (\A \ S. st_set(A)) ==> st_set(\(S))" apply (simp add: st_set_def Inter_def, auto) done @@ -71,16 +71,16 @@ lemma st_set_DiffI [intro!]: "st_set(A) ==> st_set(A - B)" by (simp add: st_set_def, auto) -lemma Collect_Int_state [simp]: "Collect(state,P) Int state = Collect(state,P)" +lemma Collect_Int_state [simp]: "Collect(state,P) \ state = Collect(state,P)" by auto -lemma state_Int_Collect [simp]: "state Int Collect(state,P) = Collect(state,P)" +lemma state_Int_Collect [simp]: "state \ Collect(state,P) = Collect(state,P)" by auto (* Introduction and destruction rules for st_set *) -lemma st_setI: "A <= state ==> st_set(A)" +lemma st_setI: "A \ state ==> st_set(A)" by (simp add: st_set_def) lemma st_setD: "st_set(A) ==> A<=state" @@ -99,7 +99,7 @@ lemma st_set_compl [simp]: "st_set(st_compl(A))" by (simp add: st_compl_def, auto) -lemma st_compl_iff [simp]: "x \ st_compl(A) <-> x \ state & x \ A" +lemma st_compl_iff [simp]: "x \ st_compl(A) \ x \ state & x \ A" by (simp add: st_compl_def) lemma st_compl_Collect [simp]: