diff -r ff8386fc191d -r 58191e01f0b1 src/HOL/Algebra/Divisibility.thy --- a/src/HOL/Algebra/Divisibility.thy Mon Apr 29 16:50:34 2019 +0100 +++ b/src/HOL/Algebra/Divisibility.thy Mon Apr 29 17:11:26 2019 +0100 @@ -398,12 +398,12 @@ subsubsection \Multiplication and associativity\ -lemma (in monoid_cancel) mult_cong_r: +lemma (in monoid) mult_cong_r: assumes "b \ b'" "a \ carrier G" "b \ carrier G" "b' \ carrier G" shows "a \ b \ a \ b'" by (meson assms associated_def divides_mult_lI) -lemma (in comm_monoid_cancel) mult_cong_l: +lemma (in comm_monoid) mult_cong_l: assumes "a \ a'" "a \ carrier G" "a' \ carrier G" "b \ carrier G" shows "a \ b \ a' \ b" using assms m_comm mult_cong_r by auto @@ -723,6 +723,11 @@ qed qed +lemma divides_irreducible_condition: + assumes "irreducible G r" and "a \ carrier G" + shows "a divides\<^bsub>G\<^esub> r \ a \ Units G \ a \\<^bsub>G\<^esub> r" + using assms unfolding irreducible_def properfactor_def associated_def + by (cases "r divides\<^bsub>G\<^esub> a", auto) subsubsection \Prime elements\