diff -r 11ba04d15f36 -r 58223c67fd8b doc-src/TutorialI/CTL/document/CTL.tex --- a/doc-src/TutorialI/CTL/document/CTL.tex Thu Nov 09 11:58:43 2006 +0100 +++ b/doc-src/TutorialI/CTL/document/CTL.tex Thu Nov 09 11:58:45 2006 +0100 @@ -141,7 +141,7 @@ for a change, we do not use fixed point induction. Park-induction, named after David Park, is weaker but sufficient for this proof: \begin{center} -\isa{f\ S\ {\isasymsubseteq}\ S\ {\isasymLongrightarrow}\ lfp\ f\ {\isasymsubseteq}\ S} \hfill (\isa{lfp{\isacharunderscore}lowerbound}) +\isa{f\ S\ {\isasymle}\ S\ {\isasymLongrightarrow}\ lfp\ f\ {\isasymle}\ S} \hfill (\isa{lfp{\isacharunderscore}lowerbound}) \end{center} The instance of the premise \isa{f\ S\ {\isasymsubseteq}\ S} is proved pointwise, a decision that \isa{auto} takes for us:%