diff -r 75d14ac0547e -r 5827b91ef30e src/HOL/Library/Countable_Set.thy --- a/src/HOL/Library/Countable_Set.thy Sun Oct 03 21:29:34 2021 +0200 +++ b/src/HOL/Library/Countable_Set.thy Mon Oct 04 12:32:50 2021 +0100 @@ -110,6 +110,25 @@ using to_nat_on_infinite[of S, unfolded bij_betw_def] by (auto cong: bij_betw_cong intro: bij_betw_inv_into to_nat_on_infinite) +text \ + The sum/product over the enumeration of a finite set equals simply the sum/product over the set +\ +context comm_monoid_set +begin + +lemma card_from_nat_into: + "F (\i. h (from_nat_into A i)) {..i. h (from_nat_into A i)) {.. 'a" where "A = range f" "inj f"