diff -r 21010d2b41e7 -r 58a0757031dd src/HOL/Probability/Sigma_Algebra.thy --- a/src/HOL/Probability/Sigma_Algebra.thy Thu May 20 23:22:37 2010 +0200 +++ b/src/HOL/Probability/Sigma_Algebra.thy Thu May 20 21:19:38 2010 -0700 @@ -75,8 +75,8 @@ assumes a: "range a \ sets M" shows "(\i::nat. a i) \ sets M" proof - - have "space M - (\i. space M - a i) \ sets M" using a - by (blast intro: countable_UN compl_sets a) + from a have "\i. a i \ sets M" by fast + hence "space M - (\i. space M - a i) \ sets M" by blast moreover have "(\i. a i) = space M - (\i. space M - a i)" using space_closed a by blast @@ -161,7 +161,7 @@ lemma sigma_sets_Un: "a \ sigma_sets sp A \ b \ sigma_sets sp A \ a \ b \ sigma_sets sp A" apply (simp add: Un_range_binary range_binary_eq) -apply (metis Union COMBK_def binary_def fun_upd_apply) +apply (rule Union, simp add: binary_def COMBK_def fun_upd_apply) done lemma sigma_sets_Inter: @@ -210,7 +210,7 @@ "sigma_sets (space M) (sets M) = sets M" proof show "sets M \ sigma_sets (space M) (sets M)" - by (metis Set.subsetI sigma_sets.Basic space_closed) + by (metis Set.subsetI sigma_sets.Basic) next show "sigma_sets (space M) (sets M) \ sets M" by (metis sigma_sets_subset subset_refl) @@ -221,7 +221,7 @@ apply (auto simp add: sigma_algebra_def sigma_algebra_axioms_def algebra_def sigma_sets.Empty sigma_sets.Compl sigma_sets_Un) apply (blast dest: sigma_sets_into_sp) - apply (blast intro: sigma_sets.intros) + apply (rule sigma_sets.Union, fast) done lemma sigma_algebra_sigma: