diff -r 55c0f9a8df78 -r 59961d32b1ae doc-src/TutorialI/Sets/sets.tex --- a/doc-src/TutorialI/Sets/sets.tex Fri Jan 26 15:02:04 2001 +0100 +++ b/doc-src/TutorialI/Sets/sets.tex Fri Jan 26 15:50:28 2001 +0100 @@ -96,7 +96,7 @@ \isacommand{by}\ blast \end{isabelle} % -This is the same example using ASCII syntax, illustrating a pitfall: +This is the same example using \textsc{ascii} syntax, illustrating a pitfall: \begin{isabelle} \isacommand{lemma}\ "(A\ <=\ -B)\ =\ (B\ <=\ -A)" \end{isabelle} @@ -287,8 +287,8 @@ \end{isabelle} Unions can be formed over the values of a given set. The syntax is -\isa{\isasymUnion x\isasymin A.\ B} or \isa{UN -x:\ A.\ B} in \textsc{ascii}. Indexed union satisfies this basic law: +\mbox{\isa{\isasymUnion x\isasymin A.\ B}} or \isa{UN +x\isasymin A.\ B} in \textsc{ascii}. Indexed union satisfies this basic law: \begin{isabelle} (b\ \isasymin\ (\isasymUnion x\isasymin A.\ B\ x))\ =\ (\isasymexists x\isasymin A.\ @@ -320,12 +320,12 @@ over a \emph{type}: \begin{isabelle} \ \ \ \ \ -({\isasymUnion}x.\ B\ x)\ {==}\ +({\isasymUnion}x.\ B\ x)\ {\isasymrightleftharpoons}\ ({\isasymUnion}x{\isasymin}UNIV.\ B\ x) \end{isabelle} Abbreviations work as you might expect. The term on the left-hand side of the -\isa{==} symbol is automatically translated to the right-hand side when the +\indexboldpos{\isasymrightleftharpoons}{$IsaEqq} symbol is automatically translated to the right-hand side when the term is parsed, the reverse translation being done when the term is displayed. @@ -523,7 +523,7 @@ Theorems involving these concepts can be hard to prove. The following example is easy, but it cannot be proved automatically. To begin -with, we need a law that relates the quality of functions to +with, we need a law that relates the equality of functions to equality over all arguments: \begin{isabelle} (f\ =\ g)\ =\ ({\isasymforall}x.\ f\ x\ =\ g\ x) @@ -535,7 +535,7 @@ side of function composition: \begin{isabelle} \isacommand{lemma}\ "inj\ f\ \isasymLongrightarrow\ (f\ o\ g\ =\ f\ o\ h)\ =\ (g\ =\ h)"\isanewline -\isacommand{apply}\ (simp\ add:\ expand_fun_eq\ inj_on_def\ o_def)\isanewline +\isacommand{apply}\ (simp\ add:\ expand_fun_eq\ inj_on_def)\isanewline \isacommand{apply}\ auto\isanewline \isacommand{done} \end{isabelle} @@ -593,7 +593,7 @@ abbreviates an application of image to {\isa{UNIV}}: \begin{isabelle} \ \ \ \ \ range\ f\ -{==}\ f`UNIV +{\isasymrightleftharpoons}\ f`UNIV \end{isabelle} % Few theorems are proved specifically @@ -845,7 +845,7 @@ Induction comes in many forms, including traditional mathematical induction, structural induction on lists and induction on size. More general than these is induction over a well-founded relation. -Such A relation expresses the notion of a terminating process. +Such a relation expresses the notion of a terminating process. Intuitively, the relation~$\prec$ is \textbf{well-founded} if it admits no infinite descending chains \[ \cdots \prec a@2 \prec a@1 \prec a@0. \] @@ -944,9 +944,9 @@ \section{Fixed Point Operators} -Fixed point operators define sets recursively. Most users invoke -them by making an inductive definition, as discussed in -Chap.\ts\ref{chap:inductive} below. However, they can be used directly. +Fixed point operators define sets recursively. They are invoked +implicitly when making an inductive definition, as discussed in +Chap.\ts\ref{chap:inductive} below. However, they can be used directly, too. The \relax{least} or \relax{strongest} fixed point yields an inductive definition; the \relax{greatest} or \relax{weakest} fixed point yields a @@ -954,7 +954,7 @@ existence of these fixed points is guaranteed by the Knaster-Tarski theorem. -The theory works applies only to monotonic functions. Isabelle's +The theory applies only to monotonic functions. Isabelle's definition of monotone is overloaded over all orderings: \begin{isabelle} mono\ f\ \isasymequiv\ {\isasymforall}A\ B.\ A\ \isasymle\ B\ \isasymlongrightarrow\ f\ A\ \isasymle\ f\ B%