diff -r c898fdd6ff2d -r 59a68ed9f2f2 src/HOL/Hyperreal/HyperNat.thy --- a/src/HOL/Hyperreal/HyperNat.thy Thu Dec 14 16:08:09 2006 +0100 +++ b/src/HOL/Hyperreal/HyperNat.thy Thu Dec 14 18:10:38 2006 +0100 @@ -17,8 +17,21 @@ hypnat_of_nat :: "nat => nat star" where "hypnat_of_nat == star_of" +definition + hSuc :: "hypnat => hypnat" where + hSuc_def [transfer_unfold]: "hSuc = *f* Suc" + subsection{*Properties Transferred from Naturals*} +lemma hSuc_not_zero [iff]: "\m. hSuc m \ 0" +by transfer (rule Suc_not_Zero) + +lemma zero_not_hSuc [iff]: "\m. 0 \ hSuc m" +by transfer (rule Zero_not_Suc) + +lemma hSuc_hSuc_eq [iff]: "\m n. (hSuc m = hSuc n) = (m = n)" +by transfer (rule Suc_Suc_eq) + lemma hypnat_minus_zero [simp]: "!!z. z - z = (0::hypnat)" by transfer (rule diff_self_eq_0)