diff -r f3763989d589 -r 5b269897df9d src/HOL/Number_Theory/Quadratic_Reciprocity.thy --- a/src/HOL/Number_Theory/Quadratic_Reciprocity.thy Sun Jul 29 18:24:47 2018 +0200 +++ b/src/HOL/Number_Theory/Quadratic_Reciprocity.thy Sun Jul 29 23:04:22 2018 +0100 @@ -93,7 +93,7 @@ lemma Gpq: "GAUSS p q" using p_prime pq_neq p_ge_2 q_prime - by (auto simp: GAUSS_def cong_altdef_int dest: primes_dvd_imp_eq) + by (auto simp: GAUSS_def cong_iff_dvd_diff dest: primes_dvd_imp_eq) lemma Gqp: "GAUSS q p" by (simp add: QRqp QR.Gpq) @@ -304,7 +304,7 @@ by (simp add: f_2_def) lemma f_2_lemma_2: "[f_2 x = int p - x] (mod p)" - by (simp add: f_2_def cong_altdef_int) + by (simp add: f_2_def cong_iff_dvd_diff) lemma f_2_lemma_3: "f_2 x \ S \ x \ f_2 ` S" using f_2_lemma_1[of x] image_eqI[of x f_2 "f_2 x" S] by presburger