diff -r b98cd131e2b5 -r 5b5656a63bd6 src/HOL/ex/While_Combinator_Example.thy --- a/src/HOL/ex/While_Combinator_Example.thy Tue Oct 06 17:46:07 2015 +0200 +++ b/src/HOL/ex/While_Combinator_Example.thy Tue Oct 06 17:47:28 2015 +0200 @@ -3,14 +3,14 @@ Copyright 2000 TU Muenchen *) -section {* An application of the While combinator *} +section \An application of the While combinator\ theory While_Combinator_Example imports "~~/src/HOL/Library/While_Combinator" begin -text {* Computation of the @{term lfp} on finite sets via - iteration. *} +text \Computation of the @{term lfp} on finite sets via + iteration.\ theorem lfp_conv_while: "[| mono f; finite U; f U = U |] ==> @@ -32,11 +32,11 @@ done -subsection {* Example *} +subsection \Example\ -text{* Cannot use @{thm[source]set_eq_subset} because it leads to +text\Cannot use @{thm[source]set_eq_subset} because it leads to looping because the antisymmetry simproc turns the subset relationship -back into equality. *} +back into equality.\ theorem "P (lfp (\N::int set. {0} \ {(n + 2) mod 6 | n. n \ N})) = P {0, 4, 2}" @@ -52,7 +52,7 @@ apply blast apply simp apply (simp add: aux set_eq_subset) - txt {* The fixpoint computation is performed purely by rewriting: *} + txt \The fixpoint computation is performed purely by rewriting:\ apply (simp add: while_unfold aux seteq del: subset_empty) done qed