diff -r 4843082be7ef -r 5c7a3b6b05a9 src/HOL/GCD.thy --- a/src/HOL/GCD.thy Tue Nov 05 05:48:08 2013 +0100 +++ b/src/HOL/GCD.thy Tue Nov 05 09:44:57 2013 +0100 @@ -1555,8 +1555,8 @@ interpretation gcd_lcm_complete_lattice_nat: complete_lattice Gcd Lcm gcd Rings.dvd "\m n. m dvd n \ \ n dvd m" lcm 1 "0::nat" where - "complete_lattice.INFI Gcd A f = Gcd (f ` A :: nat set)" - and "complete_lattice.SUPR Lcm A f = Lcm (f ` A)" + "Inf.INFI Gcd A f = Gcd (f ` A :: nat set)" + and "Sup.SUPR Lcm A f = Lcm (f ` A)" proof - show "class.complete_lattice Gcd Lcm gcd Rings.dvd (\m n. m dvd n \ \ n dvd m) lcm 1 (0::nat)" proof @@ -1574,8 +1574,8 @@ qed then interpret gcd_lcm_complete_lattice_nat: complete_lattice Gcd Lcm gcd Rings.dvd "\m n. m dvd n \ \ n dvd m" lcm 1 "0::nat" . - from gcd_lcm_complete_lattice_nat.INF_def show "complete_lattice.INFI Gcd A f = Gcd (f ` A)" . - from gcd_lcm_complete_lattice_nat.SUP_def show "complete_lattice.SUPR Lcm A f = Lcm (f ` A)" . + from gcd_lcm_complete_lattice_nat.INF_def show "Inf.INFI Gcd A f = Gcd (f ` A)" . + from gcd_lcm_complete_lattice_nat.SUP_def show "Sup.SUPR Lcm A f = Lcm (f ` A)" . qed lemma Lcm_empty_nat: "Lcm {} = (1::nat)"